Module Title: Informatics 2 — Introduction to Algorithms and Data Structures
Exam Diet: April 2024
Brief notes on answers:

PART A:

1. (a) Bookwork.

f=0(9) & 3C>03NV¥n>N.f(n)<Cg(n)
f=0Q(9) & 3¢>03NVn> N.cg(n) < f(n)
f=06() < f=0(9) & f=9y)

Equivalent variations accepted. 1 mark each, being generous with half-marks for
partially correct definitions.

(b) Yes. We may take e.g. C'=1, N = 25. Then for any n > N, we have

5vn = VNyn < Vnyn=Cn

[1 mark for ‘yes’, 1 mark for choice of C, N, 1 mark for verifying the inequality.]

(c) No. It’s not true that 5y/n = Q(n). Given any proposed ¢ and N, we may take
n > N so that n > 25/c%. Then

en = cy/ny/n > cy/n(5/c) = 5v/n

[This will be a little harder. 1 mark for ‘no’, 1 mark for an attempt to show
VeVN. - -+ 1 mark for the details.]

2. (a) The nested call structure is
Expmod(2,22,23)
Expmod(2,11,23)
Expmod(2,5,23)
Expmod(2,2,23)
Expmod(2,1,23)
Expmod(2,0,23)
1
2
4
32mod 23 =9
162 mod 23 =1
1

[3 marks for the right idea/structure, 3 marks for the details.]
(b) T'(n) =if n =0 then ©(1) else T(|n/2]) + O(1).

[1 mark for |n/2], 1 mark for other details.]
(c) ©(gn), O(d). [1 mark each.]

3. (a) The array representation of the heap is [24,17,13,9,11, 10,12, 3, 7]

(b) After the first Max-Heap-Extract-Max operation, the array representation of the
heap is [17,11,13,9,7,10, 12, 3].
After the Max-Heap-Insert(6) operation, the array representation of the heap is
[17,11,13,9,7,10,12, 3, 6].
After the second Max-Heap-Extract-Max operation, the array representation of
the heap is [13,11,12,9,7, 10,6, 3].
After the Max-Heap-Insert(16) operation, the array representation of the heap
is [16,13,12,11,7, 10,6, 3,9].

(¢) The Max-Heap-Insert operation can either be implemented recursively (via Max-

Heapify-Up), or without recursion. In either case, the running time is O(lgn)
where n is the size of the array representing the heap. We will argue for the
recursive implementation, the other one is similar. The running time of Max-
Heap-Insert consists of a few lines of pseudocode that each take O(1) time, for
increasing the heap size, adding the new element at the end, and setting the
counter to the heap size to call Max-Heapify-Up. Max-Heapify-Up compares the
value of the current element with that of its parent in O(1) time and makes the
swap if it is larger. If it makes the swap, then it calls itself recursively on its
parent. The number of times that the procedure might be called is at most the
height of the tree representing the heap. The height of this tree is O(lgn), so
the running time is O(lgn).
Marking: 1 mark for the correct array representation in the first question. For
the second question, 1.5 marks will be given for each correct step, with the total
marks of the subquestion rounded up to the nearest integer (e.g., 3/4 correct
answers award 5 marks). For the last question, 3 marks will be awarded for a
complete answer; answers do not need to argue that the height of the tree is
O(lgn). Partial answers in the right direction will be awarded partial marks.

4. (a) It is not possible for the value of M[i,v] to be anything other than 0. If that was
the case, that would mean that there is a path from v to v (i.e., a cycle) that has
total negative cost. The Bellman-Ford algorithm does not run on graphs that
have cycles of negative cost.

Marking: 1 mark for a correct example, 1 mark for the justification. Any
example that works is acceptable.

(b) The 2D-array M is given in the following table

zZ|ls |t Yy | x
0]0|o0 |0 |00 |0
1/0jo0|-41]9 |0
21012 419 |-6
31012 |-41]1-9]|-6
410(-21(-41-9 |-6

Marking: 5 marks for the correct table. 1 mark will be deducted for each
incorrect row of the table.

(¢) The modification to the recurrence relation is the following;:

Mli,v] = min{M[i — 1,v], min c¢,, + M[i —1,u]},

uweEN~ (u)

il

where N~ (u) is the set of nodes for which there is an edge (u,v) in the graph.

Marking: 3 marks for a correct recurrence relation, explaining what N~ is (or
however they choose to name it). If this set is written without explanation, 1
mark will be deducted.

The outcome of the EFT algorithm on this input is [2, 3], [4, 6], [7,9].

Marking: 2 marks for a correct answer. 1 mark will be deducted for each missing
interval, or for any interval that is not part of the solution of the algorithm.

These examples were presented in the lecture slides. For EST, consider an in-
stance in which there are m — 1 non-overlapping intervals 1,2,...,m — 1, with
siy1 > fi for all e = 1,...,m — 1 and another interval m with s,, = s; — ¢
and f,, = fm—1. The EST algorithm will schedule only interval m whereas the
optimal schedule will schedule the other m — 1 intervals instead. Hence the
approximation ratio is at least m — 1.

For SI, consider an instance in which there are 3 intervals 1,2, 3, such that 1 and
2 overlap, 2 and 3 overlap, but 1 and 3 don’t overlap and interval 2 is smaller than
the other two. The SI algorithm will select only interval 2, whereas the optimal
schedule will select the other two intervals, resulting in an approximation ratio
of at least 2.

Marking: 2 marks for EST, 1 mark for SI. Any correct example awards full
marks.

The only schedule that is optimal is the one that includes the jobs (9pm, 4 am)
and (1pm, 7pm).

Marking: 2 marks for the correct answer. This basically test the understanding
of the student to comprehend a problem described to them. If the correct sched-
ule is given, together with one more incorrect schedule, 1 mark will be awarded.
Any three schedules award 0 marks.

Following the hint, we observe that at most one interval s; that is active at mid-
night can be included in the optimal schedule. Given s;, then we can remove all
intervals that overlap with s; from consideration and use the optimal algorithm
for the standard interval scheduling problem for the remaining intervals. Since
we don’t know s;, we can try that for each possible s; and keep the solution
with the largest cardinality. If none of the jobs that are active at midnight are
included in the schedule, then we can again run the standard interval scheduling
optimal algorithm for the set of all jobs.

Marking: 3 marks for the correct answer. The solution does not have to entirely
formal or detailed. A solution where the idea is correct but some details might
be missing will be awarded full marks.

iii

PART B:

1. (a) Both are ©(1). In the best case, no resizing is involved, so we just perform a
fixed number of constant-time operations. [1 mark for each ©(1), 2 marks for
justifications. |

(b) Any correct implementation accepted, e.g.

resize(A,i,j,m):
B = new array|[m]
ifi < j
for k =1ito j-1
Blk—i] = A[K]
return (B,0,j—1)
else
for k =1ito |A|—1
Blk—i] = A[i]
for k =0 to j—1
B[|A|—i+k] = A[K]
return (B,0,|A|—i+]))

Starting at position 0 in B seems the obvious thing to do, but isn’t required. [4
marks for the right idea, 4 marks for correct details.]

(c) Both are ©(n). For push, when a resize is performed, the dominant contribu-
tions are an array allocation of size 2n and a copying of n queue items in total.
Likewise, for pop with a resize, we have an array allocation of size n/2 and a
copying of n/4 queue items (note that a resize will be triggered as soon as the
queue size hits n/4). [1 mark for each ©(n), 2 marks in total for justifications.]

(d) We currently have n queue items in an array of size 2n. So if the next resize is

an expansion, this will require n further queue items, i.e. at least n pushes. If
the next resize is a contraction, this will require that the number of queue items
shrinks to n/2, i.e. we need n/2 pops. (Note that 2n > 10 since the array size
is never allowed to dip below 10.) So it takes a minimum of n/2 operations to
trigger another resize. [2 marks for right answer, accepting anything close to
n/2. 3 marks for justification.]
For the record, the situation for pop is as follows (this is not required, but is
alluded to in part (e)). We currently have n/4 queue items sitting in an array
of size n/2. So by the same reasoning as above, it would take a further n/4
operations to trigger another expansion, or (if n/2 > 10) n/8 operations to
trigger another contraction. So minimum number of operations is n/8 if n > 20,
or n/4 otherwise.

(e) In a long run of operations, each push/pop that performs a resize takes time
©(n), but is then followed by at least n/8 — 1 = Q(n) operations that require no
resize and so each take ©(1) time. So by spreading the cost of the resize over
these (n) operations, we see that the amortized time per operation is ©(1). [2
marks for ©(1), 2 marks for explanation.|

2. (a) In this example all of the items obviously can fit in the knapsack. The question
is however about running the dynamic programming-based algorithm. The table
that the algorithm produces is shown in Table 1.

v

Marking: 8 marks if the student draws the correct table, marks will be deducted
for mistakes in the table.

(b) For the calculation of M2, 3] we have that wy = 2 and w = 3 so the item fits in
the solution and we can use the recurrence relation

M[2,3] = max{M][1, 3],v, + M1, 1]} = max{2,5} = 5.

Similarly, for M[3,5] we have that w3 = 4 and w = 5 so the item fits in the
solution and we can use the recurrence relation

M][3,5] = max{M|2,5],v3 + M[2,1]} = max{5,6} = 6.

Marking: 1 mark each for the correct explanation of how M|[2,3] and M]3, 5]
are derived.

(¢) The dynamic programming-based algorithm is not a polynomial time algorithm,
it is only pseudopolynomial time. Its running time is O(nW), and it is only
polynomial time if the weights wy, ..., w,, W are given in the input in unary
representation. The problem is in fact NP-complete, so a polynomial-time algo-
rithm is possible only if P = NP.

Marking: If the student answers “no” to the first question correctly, they will
awarded 1 mark; they don’t necessarily need to write down the running time.
They should mention that the problem is NP-complete or NP-hard to get any
extra marks. If they answer the second question as “no” then 1 mark will be
deducted, if they don’t mention “unless P = NP. If they answer “yes” to the
first question incorrectly, but right down the correct running time as O(nW)
then they will be awarded 1 mark.

(d) For non-optimality, consider an instance with w; = 1wy = 2,w3 = 3 and
v = 2,09 = 3,v3 =4 and W = 5. The items 1,2, 3 are already sorted in terms
of non-decreasing v; /w;, so the algorithm will consider them in that order. The
two candidate sets to be included in the solution are thus {1, 2} for a total value
of 5 and {3} for total value of 4, and {1, 2} will be selected. We observe however
that it is possible to choose the set {2,3} with weight exactly 5, which has a
total value of 7.

Marking: Any example that shows non-optimality will be awarded the full 2
marks, otherwise these 2 marks will not be awarded.

(e) We now argue that the approximation ratio of the algorithm is at most 2. Let
x be the solution outputted by Greedy B, and let v(x) be its value. Let z* be
an optimal solution to the (0/1)-Knapsack instance (where x* is a set of items)
and let v(x*) be the total value of that solution. Furthermore, let z* denote the

012345 /6|7
0/0{0]0]0]0[0[0]O
1101212122222
21012355555
31012(3[5[5[6[7]9

Table 1: The table M output by the dynamic programming-based algorithm.

3.

solution to the fractional version of the (0/1)-knapsack instance, where items
are allowed to be partially added to the knapsack and let v(z*) be its value.
Obviously, it holds that v(z*) < v(z*). Now, observe that since the bang-per-
buck greedy algorithm (Greedy A plus the largest fraction that fits from the
next item) is optimal for the fractional version (this was shown in the lectures),
it holds that z* consists of items aq,...,a;,_1 and a A fraction of item aj.

We have
v(z") <v(2") =[v(a) + ... +v(ai-1)] + A -v(a;) < 2-v(x),

where the last inequality holds since v(z) = max{v(a;) + ...+ v(a;_1),v(a;)}.
Marking: For the upper bound, 6 marks will be awarded for a complete solution,
partial marks will be awarded for solutions that are in the right direction.

(f) The running time of the Greedy B algorithm is O(nlogn) needing to sort the
items via their ratios, plus the time required for computing the sums of values
and weights and the comparisons to select the output. This is a polynomial-
time algorithm. This is not the best possible approximation algorithm for the
problem. As was discussed in the lectures, there is a Fully Polynomial Time
Approximation Scheme (FPTAS) for the algorithm, i.e., an algorithm which runs
in time polynomial in the input size and 1/e and produces an 1+ € approximation
to the optimal solution.

Marking: 1 mark will be awarded for the correct running time. 2 marks will be
awarded for identifying that there is an FPTAS and therefore Greedy B is not
the best approximation algorithm.

(a) The LL(1) parsing algorithm executes thus:

Operation Input left ‘ Stack
(xy) T
Lookup T,((xy)| BPC
Lookup B,((xy)| (PC
Match (Xy) pPC
Lookup P,x xy) | TTC
Lookup T x xy) | xTC
Match x y) TC
Lookup T,y y) yC
Match y) C
Lookup C,)))
Match)
Success!

[Roughly 1 mark per correct line.]

(b) The grammar would no longer be LL(1). If we were expecting a T-phrase and
saw ‘(‘ in the input, we wouldn’t know whether to expand T to BPC or BTC.
[1 mark for ‘no’; 2 marks for explanation.|

(¢) The rule T — BPC violates Chomsky normal form as the RHS is ternary. We
can fix this e.g. by introducing a new non-terminal U and replacing this rule by
T — BU and U — PC. [1 mark for picking the right rule, 2 marks for the fix.]

vi

(d)

The CYK chart is:

(|x]y])
(|B T
X T|P|U
y T
) C

with the evident backtrace pointers leftward and downward from the non-diagonal
entries. [1 mark for a table of the right form, 3 marks for the entries, 2 marks
for the pointers.]

In the presence of ternary rules, CYK-style parsing is less efficient because for
each segment of input we now need to consider all possible 3-way splits rather
than just 2-way. This bumps up the overall runtime from ©(n?) to O(n?). [2
marks for the idea, 1 mark for some relevant asymptotic assertion.]

vil

