
Algorithms and Data Structures
Content and Basic Notions

Algorithms and Data
Structures

A continuation of Introduction to Algorithms and Data
Structures (INF2 - IADS).

Mostly same techniques, more advanced applications.

Divide-and-Conquer, Greedy, Dynamic Programming

More emphasis on “Algorithms” rather than “Data
Structures”.

More theorem proving.

The course content

The course content

Review of algorithm design basics, including time and
space complexity, and asymptotic notation.

The course content

Review of algorithm design basics, including time and
space complexity, and asymptotic notation.

The divide-and-conquer paradigm:

The course content

Review of algorithm design basics, including time and
space complexity, and asymptotic notation.

The divide-and-conquer paradigm:

Sorting, matrix multiplication, Fourier transform.

The course content

Review of algorithm design basics, including time and
space complexity, and asymptotic notation.

The divide-and-conquer paradigm:

Sorting, matrix multiplication, Fourier transform.

Upper and lower bound proofs.

The course content

Review of algorithm design basics, including time and
space complexity, and asymptotic notation.

The divide-and-conquer paradigm:

Sorting, matrix multiplication, Fourier transform.

Upper and lower bound proofs.

Solving recurrence relations.

The course content (cont)

The course content (cont)

The greedy paradigm:

The course content (cont)

The greedy paradigm:

Minimum spanning trees.

The course content (cont)

The greedy paradigm:

Minimum spanning trees.

Network flows.

The course content (cont)

The greedy paradigm:

Minimum spanning trees.

Network flows.

Linear programming.

The course content (cont)

The greedy paradigm:

Minimum spanning trees.

Network flows.

Linear programming.

The dynamic programming paradigm:

The course content (cont)

The greedy paradigm:

Minimum spanning trees.

Network flows.

Linear programming.

The dynamic programming paradigm:

Matrix-chain multiplication and other examples.

What is an algorithm?

A set of instructions for solving a
problem or performing a computation.

Origin of the name: Latinisation of the
name given by Persian scholar
Muhammad ibn Musa al-Khwarizmi.

Example: Sorting
Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting
Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting
Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting
Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Is 2 < 6?

Example: Sorting
Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting
Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting
Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting
Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Is 19 < 6?

Example: Sorting
Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting
Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting
Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Is 4 < 19?

Example: Sorting
Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting
Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting
Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Is 4 < 6?

Example: Sorting
Given a sequence of numbers, put them in increasing order.

106 42 1 141719 21 24

Example: Sorting
Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

Example: Sorting
Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

Is 4 < 2?

Example: Sorting
Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

Example: Sorting
Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

Example: Sorting
Given a sequence of numbers, put them in increasing order.

10642 1 141719 21 24

continues the same way…

Example: Sorting
Given a sequence of numbers, put them in increasing order.

continues the same way…

106421 14 17 19 21 24

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4
A[4] = 19, i = 2

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4
A[4] = 19, i = 2

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4

i=3 A[3] = 19 > key = 4
A[4] = 19, i = 2

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4still in the while loop

i=2

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4still in the while loop

i=2 A[2] = 6 > key = 4

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

106 42 1 141719 21 24

j=4
key=4still in the while loop

i=2 A[2] = 6 > key = 4
A[3] = 6, i = 1

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

j=4
key=4still in the while loop

i=2 A[2] = 6 > key = 4
A[3] = 6, i = 1

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

j=4
key=4still in the while loop

i=2

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

j=4
key=4still in the while loop

i=1

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

j=4
key=4still in the while loop

A[1] = 2 < key = 4i=1

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

j=4
key=4still in the while loop

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

still in the while loop

Describing algorithms:
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

still in the while loop j=5

What should we expect
from algorithms?

Correctness: It computes the desired output.

Termination: Eventually terminates (or with high probability).

Efficiency:

The algorithm runs fast and/or uses limited memory.

The algorithm produces a “good enough” outcome.

Correctness

Correctness

How do we prove that our algorithm is always correct?

Correctness

How do we prove that our algorithm is always correct?

Proof techniques (induction, proof-by-contradiction etc).

Correctness

How do we prove that our algorithm is always correct?

Proof techniques (induction, proof-by-contradiction etc).

For those of you that took INF2-IADS: You did this a lot
there!

Running Time /  
Time Complexity

Running Time /  
Time Complexity

Different computers have different speeds.

Running Time /  
Time Complexity

Different computers have different speeds.

Random Access Machine (RAM) model.

Running Time /  
Time Complexity

Different computers have different speeds.

Random Access Machine (RAM) model.

Instructions:

Running Time /  
Time Complexity

Different computers have different speeds.

Random Access Machine (RAM) model.

Instructions:

Arithmetic (add, subtract, multiply, etc).

Running Time /  
Time Complexity

Different computers have different speeds.

Random Access Machine (RAM) model.

Instructions:

Arithmetic (add, subtract, multiply, etc).

Data movement (load, store, copy, etc).

Running Time /  
Time Complexity

Different computers have different speeds.

Random Access Machine (RAM) model.

Instructions:

Arithmetic (add, subtract, multiply, etc).

Data movement (load, store, copy, etc).

Control (branch, subroutine call, return, etc).

Running Time /  
Time Complexity

Different computers have different speeds.

Random Access Machine (RAM) model.

Instructions:

Arithmetic (add, subtract, multiply, etc).

Data movement (load, store, copy, etc).

Control (branch, subroutine call, return, etc).

Each instruction is carried out in constant time.

Running Time /  
Time Complexity

Different computers have different speeds.

Random Access Machine (RAM) model.

Instructions:

Arithmetic (add, subtract, multiply, etc).

Data movement (load, store, copy, etc).

Control (branch, subroutine call, return, etc).

Each instruction is carried out in constant time.

We can count the number of instructions, or the number of steps.

Example: Running Time of InsertionSort

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case?

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Worst case?

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Worst case? Reverse sorted array, tj = j

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Worst case? Reverse sorted array, tj = j

Bounded by some for some constant ccn

Example: Running Time of InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array, tj = 1

Worst case? Reverse sorted array, tj = j

Bounded by some for some constant ccn

 Bounded by some for some constant ccn2

Memory Usage /  
Space Complexity

Memory Usage /  
Space Complexity

Each memory cell can hold one element of the input.

Memory Usage /  
Space Complexity

Each memory cell can hold one element of the input.

Total memory usage = Memory used to hold the input +
extra memory used by the algorithm (auxiliary memory).

Memory Usage /  
Space Complexity

Each memory cell can hold one element of the input.

Total memory usage = Memory used to hold the input +
extra memory used by the algorithm (auxiliary memory).

Q: What is the total and the auxiliary memory usage of
InsertionSort?

Worst vs Best vs Average Case

Worst vs Best vs Average Case

Convention: When we say “the running time of Algorithm A”, we
mean the worst-case running time, over all possible inputs to the
algorithm.

Worst vs Best vs Average Case

Convention: When we say “the running time of Algorithm A”, we
mean the worst-case running time, over all possible inputs to the
algorithm.

We can also measure the best-case running time, over all possible
inputs to the problem.

Worst vs Best vs Average Case

Convention: When we say “the running time of Algorithm A”, we
mean the worst-case running time, over all possible inputs to the
algorithm.

We can also measure the best-case running time, over all possible
inputs to the problem.

In between: average-case running time.

Running time of the algorithm on inputs which are chosen at
random from some distribution.

The appropriate distribution depends on the application (usually the
uniform distribution - all inputs equally likely).

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

Select an input uniformly at random from all possible sequences with n numbers.

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

Select an input uniformly at random from all possible sequences with n numbers.

On average, key will be smaller than half of the elements in A .[1,…, j]

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

Select an input uniformly at random from all possible sequences with n numbers.

On average, key will be smaller than half of the elements in A .[1,…, j]

The while loop will look “halfway” through the sorted subarray A .[1,…, j]

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

Select an input uniformly at random from all possible sequences with n numbers.

On average, key will be smaller than half of the elements in A .[1,…, j]

The while loop will look “halfway” through the sorted subarray A .[1,…, j]

This means that tj =
j

2

Example: Average Running Time of
InsertionSort

n times
for loops, the tests are executed

one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

Select an input uniformly at random from all possible sequences with n numbers.

On average, key will be smaller than half of the elements in A .[1,…, j]

The while loop will look “halfway” through the sorted subarray A .[1,…, j]

This means that tj =
j

2
 Bounded by some for some constant ccn2

Asymptotic Notation

When n becomes large, it makes less of a difference if an
algorithm takes 2n or 3n steps to finish.

In particular, 3logn steps are fewer than 2n steps.

We would like to avoid having to calculate the precise
constants.

We use asymptotic notation (next lecture).

