
Algorithms and Data Structures
Content and Basic Notions



Algorithms and Data 
Structures

A continuation of Introduction to Algorithms and Data 
Structures (INF2 - IADS).


Mostly same techniques, more advanced applications.


Divide-and-Conquer, Greedy, Dynamic Programming


More emphasis on “Algorithms” rather than “Data 
Structures”. 


More theorem proving. 
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The course content

Review of algorithm design basics, including time and 
space complexity, and asymptotic notation.

The divide-and-conquer paradigm:

Sorting, matrix multiplication, Fourier transform.

Upper and lower bound proofs.

Solving recurrence relations.
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The course content (cont)

The greedy paradigm:

Minimum spanning trees.

Network flows.

Linear programming.

The dynamic programming paradigm:

Matrix-chain multiplication and other examples.



What is an algorithm?

A set of instructions for solving a 
problem or performing a computation. 

Origin of the name: Latinisation of the 
name given by Persian scholar 
Muhammad ibn Musa al-Khwarizmi.
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Example: Sorting
Given a sequence of numbers, put them in increasing order.

continues the same way…

106421 14 17 19 21 24
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i=2 A[2] = 6 > key = 4
A[3] = 6, i = 1
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Describing algorithms: 
Pseudocode

The algorithm maintains a sorted array in each iteration (each time the for loop is executed).

10642 1 141719 21 24

still in the while loop j=5



What should we expect 
from algorithms?

Correctness: It computes the desired output.


Termination: Eventually terminates (or with high probability).


Efficiency:


The algorithm runs fast and/or uses limited memory.


The algorithm produces a “good enough” outcome.
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Correctness

How do we prove that our algorithm is always correct?

Proof techniques (induction, proof-by-contradiction etc).

For those of you that took INF2-IADS: You did this a lot 
there!
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Running Time /  
Time Complexity

Different computers have different speeds.

Random Access Machine (RAM) model.

Instructions:

Arithmetic (add, subtract, multiply, etc).

Data movement (load, store, copy, etc).

Control (branch, subroutine call, return, etc).

Each instruction is carried out in constant time.

We can count the number of instructions, or the number of steps.
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Memory Usage /  
Space Complexity

Each memory cell can hold one element of the input.

Total memory usage = Memory used to hold the input + 
extra memory used by the algorithm (auxiliary memory).

Q: What is the total and the auxiliary memory usage of 
InsertionSort?
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Worst vs Best vs Average Case

Convention: When we say “the running time of Algorithm A”, we 
mean the worst-case running time, over all possible inputs to the 
algorithm.

We can also measure the best-case running time, over all possible 
inputs to the problem.

In between: average-case running time. 


Running time of the algorithm on inputs which are chosen at 
random from some distribution.


The appropriate distribution depends on the application (usually the 
uniform distribution - all inputs equally likely).
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n times
for loops, the tests are executed


one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

Select an input uniformly at random from all possible sequences with n numbers.

On average, key will be smaller than half of the elements in A .[1,…, j]

The while loop will look “halfway” through the sorted subarray A .[1,…, j]

This means that tj =
j

2
   Bounded by some           for some constant ccn2



Asymptotic Notation

When n becomes large, it makes less of a difference if an 
algorithm takes 2n or 3n steps to finish.


In particular, 3logn steps are fewer than 2n steps.


We would like to avoid having to calculate the precise 
constants.


We use asymptotic notation (next lecture).


