Introduction to Theoretical Computer Science
Lecture 4: Context-Free Languages

Richard Mayr

University of Edinburgh

Semester 1, 2025/2026

A language is context-free (a CFL) iff it is recognised by a context-free
grammar.
Exercise: Are all regular languages context-free?

Uses of CFLs

Many programming languages are syntactically context-free. Even the
syntax we defined last lecture for regular expressions is context free.
Suppose X = {a, b}.

S=0)elalb|SUS|[SoS]|S*|(S)

Exercise: Derive with this grammar that (a Ub o a)* is a regular
expression.

Always replace the leftmost remaining non-terminal at each step,
giving a leftmost derivation.

Parse Trees

A parse tree is a tree that shows how
to derive a string from a non-terminal.

The yield of a parse tree is the con-

catenation of all symbols at the leaves @
of the tree. If the root of the tree is S

then the yield x € £(G).

Exercise: Are there multiple parse @ @

trees possible for our example?

Ambiguity

A grammar is ambiguous if there is @

more than one parse tree (or leftmost

derivation) for a given string. This can : :

cause problems with parsing and with

interpretation.

Eliminating Ambiguity

We want to eliminate ambiguity while still accepting all strings we
accepted before. This is possible for our regular expressions language.
Define first the atomic expressions:

A= (S)|0|elalDb
Then expressions that may include Kleene star:
K — A Ax

Then the expressions that may include composition (but
left-associatively):

C—K|CoK

Lastly, expressions that may include union:
S—»C|SucC

Question: What order of operations is assumed here?

Pushdown Automata

Pushdown Automata (PDAs) are to CFGs what Finite Automata are to
regexps. Just as recursion is implemented with a stack in computer
programming, a PDA is a e-NFA with an additional stack.

It is more powerful than an NFA as it has infinite memory, but can only
use it by pushing and popping symbols.

Pushdown Automata

Example (Pushdown Automaton)

0,6 = 0 0,0 > €
1,6 51 1,1 ¢

@ €€ e él\ €€ ¢ é}\ €0 ¢ @

Read x, y — z as consuming input x, popping y off the top of the stack,
and pushing z on to the stack. The transition may only fire if y is on top
of the stack.

In the above example, the input alphabet X is {0, 1} and the stack
alphabetT'is {0,1, e}.

Exercise: What language is accepted here? Derive the string 1001.

4

Formally

Definition

A pushdown automaton is a 6-tuple (Q, X, T, 8, gg, F) where Q,X,I" are
all finite sets. I' is the stack alphabet, and 6 now may take a stack
symbol as input or return one as output:

SZQXZi;XFg—)P(QXFS)

All other components are as with e-NFAs.

Acceptance

A string w is accepted by a PDA if it ends in a final state, i.e.
8*(qp, w, €) gives a state g and a stack y such that g € F.

Claim

Theorem

A language is context-free iff it is recognised by a pushdown
automaton.

@ Think about why this might be.

@ Can you think about languages that might not be context-free?
@ Next lecture: beyond the context-free languages.

Claim

Theorem

A language is context-free iff it is recognised by a pushdown
automaton.

The details of the proof of this are in Sipser’s book, but I will give a
sketch here.

CFG to PDA

The upper self-loop is added for every terminal a in the CFG. The
lower self-loop is a shorthand for a looping sequence of states added

for each production A — w that builds up w on the stack one symbol
at atime.

a,a— €

4)@8,8—)50% €, 0 ¢ @
0 N 91 A 92

eA—-w

PDA to CFG

First, we make sure that the PDA has only one accept state, empties
its stack before terminating, and has only transitions that either push
or pop a symbol (but not transitions that do both or neither).

GivensuchaPDA P = (Q,X, T, 9, qqg, F), we providea CFG (V,X,R, S)
with V containing a non-terminal Apq for every pair of states

(p,q) € Q@ x Q. The non-terminal Apq generates all strings that go
from p with an empty stack to g with an empty stack. Then S is just
Adogaccept - R CONSists of:

@ Apg — aAisbifp 282t and s b’ti> g (for intermediate states
r,s and stack symbol ¢).
@ Apg — AprArq for all intermediate states r.
@ App — €
Proofs of why this works are in Sipser.

Closure properties

Are context-free languages closed under:
@ Union? Yes
@ Concatenation? Yes
@ Kleene Star? Yes
@ Intersection? No

Example
Consider L = {a'b/c/ | i,j € N} and L, = {a/bic’ | i,j € N}.

@ Complementation? No (via de Morgan’s laws)

	CFGs and PDAs

