
Introduction to Theoretical Computer Science
Lecture 5: Starting on Computability

Richard Mayr

University of Edinburgh

Semester 1, 2025/2026

More Pigeonholes

Suppose a CFG has n non-terminals, and we have a parse tree of
height k > n. What must have happened?.
The same non-terminal V must have appeared as its own descendant
in the tree.

Pumping for CFLs
Pumping down Cut the tree at the higher occurrence of V and

replace it with the subtree at the lower occurrence of V .
Pumping up Cut at the lower occurrence and replace it with a fresh

copy of the higher occurrence.

Pumping Lemma for CFLs
Theorem
If L is context-free then there exists a p ∈ N (the pumping length)
such that if w ∈ L with |w | ≥ p then w may be split into five pieces
w = uvxyz such that:

1 uv ixy iz ∈ L for all i ∈ N.
2 |vy | > 0 and
3 |vxy | ≤ p

It can be useful to think of it like a game:
1 You pick a language L
2 Adversary picks a pumping length p
3 You pick a word w ∈ L with |w | ≥ p.
4 Adversary splits it into uvxyz s.t. |vxy | ≤ p and vy 6= ε.
5 You win if you can find i ∈ N such that uv ixy iz /∈ L. Your prize is a

proof of L not being context-free.

Examples

Example
Let L = {aibici | i > 0}. If L is a CFL it must have a pumping length p.
Consider the word w = apbpcp. Then, we cannot avoid contradiction
no matter how we split w = uvxyz :

If vxy is in a∗b∗ then uxz (i.e. uv0xy0z) is not in L because condition 2
says vy contains at least one symbol. So uxz has fewer than p copies
of a or b but still p copies of c. Similarly if vxy is in b∗c∗.

There are no other cases due to condition 3.

Another example
Consider L = {ww | w ∈ {0, 1}∗}. If it is context free it must have a
pumping length p > 0.

A rule of thumb
Pick a string w that allows as few cases for partitions of w = uvxyz as
possible, to reduce the number of case distinctions.

Consider the word 0p1p0p1p. Let uvxyz = w such that |vxy | ≤ p and
vy 6= ε. vxy can range over at most two of the four regions:

If vxy is in a single one of the regions i.e. vxy ∈ 0∗ ∪ 1∗ then
pumping either way takes us out of L.
Otherwise, if vxy spans some part of the first two or last two
regions, i.e. a substring of 0p1p, pumping down will take us out of
L.
If vxy straddles the midpoint of w , pumping down will remove 1s
from the first half but 0s from the second half, taking us out of L.

Chomsky Grammars

CFGs are a special case of Chomsky Grammars. Chomsky Grammars
are much like CFGs except that the left-hand side of a production may
be any string that includes at least one non-terminal:

Example
S → abc | aAbc
Ab → bA
Ac → Bbcc
bB → Bb
aB → aaA | aa

This grammar is called context-sensitive

The Chomsky Hierarchy

Definition
A grammar G = (N,Σ,P, S) is of type:

0 (or computably enumerable) in the general case.
1 (or context-sensitive) if |α| ≤ |β| for all productions α→ β,

except we also allow S → ε if S does not occur on the
RHS of any rule.

2 (or context-free) if all productions are of the form A→ α

(i.e. a CFG).
3 (or right-linear) if all productions are of the form A→ w

or A→ wB where w ∈ Σ and B ∈ N.

Recursively enumerable is also called Turing-recognisable.
Right-linear is also called...regular!

Emptiness

Can we write a computer program to determine if a given regular
language is empty?

Emptiness for regular languages
Given a finite automaton, this is an instance of graph reachability —
can we reach a final state? Can be done via depth-first search.
Given a regular expression, we can work inductively (see board).

Emptiness Continued

Can we write a computer program to determine if a given context-free
language is empty?

Emptiness of CFLs
Given a CFG for our language:

1 Mark the terminals and ε as generating.
2 Mark as generating all non-terminals which have a production

with only generating symbols in their RHS.
3 Repeat until nothing new is marked generating.
4 Check whether S is marked as generating.

Equivalence

Can we write a computer program to determine if two given DFAs are
equivalent?

Equivalence of Regular Languages
Given two DFAs for L1 and L2 we can use our standard constructions
to produce a DFA of the symmetric set difference:

(L1 ∩ L2) ∪ (L2 ∩ L1)

(Constructions for complement and intersection are in coursework 1, not lectures.)
If this DFA is empty, then the two languages are equal.

Equivalence Continued

Later we’ll develop a theory that allows us to prove rigorously that
there are problems that cannot be solved by any algorithm that can be
implemented as a conventional computer program.

Such problems are called undecidable.

Many undecidable problems exist for CFLs:
Are two CFGs equivalent?
Is a given CFG ambiguous?
Is there a way to make a CFG unambiguous?
Is the intersection of two CFLs empty?
Does a CFG generate all strings Σ∗ (also called universality)

Register Machines

Key Insight
There is a general model of computation

You may have heard of the Turing Machine, but we will first focus on
something closer to our understanding of programs.

Definition
A register machine, or RM, consists of:

A fixed number m of registers R0 . . .Rm−1, which each hold a
natural number.
A fixed program P which is a sequence of n instructions I0 . . . In−1

Each instruction is either: INC(i), which increments register Ri , or
DECJZ(i , j) which decrements Ri unless Ri = 0 in which case it jumps
to Ij .

Questions of RMs

What can we compute with RMs? What is unrealistic about them?

Claim
RMs can compute anything any other computer can.

RM ASM

Problem
Programming in RMs directly is very tedious and programs can be
overlong.

We will use some simple notation similar to assembly language to
simplify it.

Macros
We’ll write them in English, e.g. “add Ri to Rj clearing Ri”.
When defining a macro, we’ll number instructions from zero, but
the instructions are renumbered when macros are expanded. We
also use symbolic labels for jumps.
Macros can use special, negative-indexed registers, guaranteed
not to be used by normal programs.

Goto Ij using R−1 as temp
0 DECJZ (−1, j)

Clear Ri
0 DECJZ (i ,2)
1 GOTO 0 (using macro above)

Copy Ri to Rj using R−2 as temp
0 CLEAR Rj

loop1 : 2 DECJZ (i , loop2)
3 INC (j)
4 INC (−2)
5 GOTO loop1

loop2 : 6 DECJZ (−2, end)
7 INC (i)
8 GOTO loop2

end 9

RM Programming Exercises

Addition and subtraction of registers
Comparison of registers
Multiplication of registers
Division/Remainder of registers

How many registers?

So far, we’ve just assumed we had as many registers as we needed.
But how many do we actually need?

Pairing functions
A pairing function is an injective function N× N→ N.
An example is f (x , y) = 2x3y .
We write 〈x , y〉2 for f (x , y). If z = 〈x , y〉2, let z0 = x and z1 = y .

Exercise: Program a pairing function and unpairing functions on a RM.
Exercise: Design (or look up) a surjective pairing function.

Generalising
Just a 2-tuple pairing function is enough to cram an arbitrary
sequence of natural numbers into one N∗ → N.

Conclusion

With pairing functions, we can simulate any number of registers using
just the registers we need to compute the pairing and unpairing
functions, and one user register.

Question
So, how many registers do we actually need?

	Non-context-free languages
	Algorithms
	Register Machines

