Introduction to Theoretical Computer Science Lecture 8: Semi-decidability

Richard Mayr

University of Edinburgh

Semester 1, 2025/2026

A Review of Halting

The halting problem *H* is not symmetric:

- if $M \in H$ we can determine this: run M—if it halts say "yes"
- if $M \notin H$ we can't determine this by running M—it will run forever.

Definition

A problem (D, Q) is **semi-decidable** if there is a TM/RM that returns "yes" for any $d \in Q$, but may return "no" or loop forever when $d \notin Q$.

Semi-decidable problems are sometimes called recognisable.

A Review of Looping

The looping problem *L* is not symmetric:

- if $M \notin L$ we can determine this: run M—if it halts say "no"
- if $M \in L$ we can't determine this by running M—it will run forever.

Definition

A problem (D, Q) is co-semi-decidable if there is a TM/RM that returns "no" for any $d \notin Q$, but may return "yes" or loop forever when $d \in Q$.

Theorem

Any problem that is both semi-decidable and co-semi-decidable is decidable. **Why?**

Therefore L cannot be semi-decidable. Why?

Unrecognisable languages

We have seen that H and L are semi-decidable and co-semi-decidable, respectively.

Theorem

If a problem P is semi-decidable then its complement \overline{P} is co-semi-decidable, and vice versa.

Question

Are there any problems that are neither semi-decidable nor co-semi-decidable?

Yes, by the counting argument from last lecture.

Enumeration

Recall

A set *S* is *enumerable* if there is a bijection between *S* and \mathbb{N} .

A set S is called *computably enumerable* (or c.e.)¹ if the enumeration function $f: \mathbb{N} \to S$ is computable.

Example

We can think of an enumerating RM/TM as outputting an "infinite list" as it executes forever.

Question: H is not decidable. But can we enumerate it?

¹Sometimes called *recursively enumerable* or r.e.

Interleaving

Observe that the set of valid RM descriptions is decidable: Given $n \in \mathbb{N}$, we can check whether $n = \lceil M \rceil$ for some machine M. Therefore, we can enumerate all machines $\lceil M_0 \rceil, \lceil M_1 \rceil, \ldots$

Interleaving

```
\mathsf{ms} := \langle \rangle; \quad (\mathsf{A \ list \ of \ RMs})
i := 0
while true do
    \mathsf{ms} := \mathsf{ms} + \langle \lceil M_i \rceil \rangle
    for \lceil M \rceil \in \mathsf{ms} \, \mathsf{do}
       run M for one step and update ms
        if M has halted:
            output \lceil M \rceil; delete M from ms
    od
   i := i + 1
od
```

Interleaving

Interleaving shows that *H* is computably enumerable.

Theorem

Any semi-decidable problem *P* is computably enumerable. **Why?**

Any computably-enumerable problem P is semi-decidable.

Why?

Therefore, semidecidability is the same as c.e.-ness.

Reductions and c.e

Recall:

To prove that a problem P_2 is hard, show that there is an easy reduction from a known hard problem P_1 to P_2 .

Theorem

To prove that a problem P_2 is not c.e., show that there is a mapping reduction from a known not-c.e. problem P_1 to P_2 .

Note we must use mapping reductions, not Turing reductions. Why? H is c.e. but its complement L is not. But H is Turing-reducible to L and L is Turing-reducible to H by flipping the answers.

Returning to UH

- Recall that Uniform Halting is the undecidable problem that contains all RM/TMs that halt on all inputs.
- We have a mapping reduction from H to UH (last lecture), so we know that UH is not co-semi-decidable. Why?
- We also have a mapping reduction from L to UH, in the next slide.

Conclusion

UH is neither semi-decidable nor co-semi-decidable.

We showed that such problems must exist earlier by counting.

Reducing L to UH

We want a transducer $f: RM \times \text{Input} \to RM$ such that f(M, i) halts on all inputs iff M loops on i.

As with H to UH, we can make a machine that replaces any input with i and then runs M, but how do we make it stop?

Solution

Our machine will $\frac{1}{2}$ measure how long M runs for, with a timeout as its input.

- f(M, i) will take a number n as input, and run M on i for at most n steps.
- If M halts on i before n steps, f(M, i) goes into a loop.
- If M goes n steps without halting, our f(M, i) just halts.

If M loops on i, then f(M, i) will halt on all inputs n, and if M halts, then f(M, i) loops on some sufficiently large n.