Introduction to Theoretical Computer Science Lecture 9 [bonus, not examinable]: Arithmetical Hierarchy

Dr. Richard Mayr

University of Edinburgh

Semester 1, 2025/2026

What we have so far

Sigmas

We shall introduce notation to describe decision problems.

Sigma

The set Σ_1^0 describes all problems that can be phrased as $\{y \mid \exists x \in \mathbb{N}. \ R(x,y)\}$, where R is a decidable predicate. We can replace the \mathbb{N} with any c.e. set (i.e. type 0).

- If a problem $P \in \Sigma_1^0$ then P is semidecidable. Why? (we can enumerate all x and test R(x, y), halting if true)
- If a problem P is semidecidable then $P \in \Sigma^0_1$. Why?

Definition: Kleene's T Predicate

 $T(\lceil M \rceil, x, y) = M$ accepts x in y steps.

If a machine M semi-decides P, then $P = \{x \mid \exists y. \mathcal{T}(\lceil M \rceil, x, y)\}$

Pis

Pi

The set Π_1^0 describes all problems that can be phrased as $\{y \mid \forall x \in \mathbb{N}. \ R(x,y)\}$, where R is a decidable predicate. We can replace the \mathbb{N} with any c.e. set (i.e. type 0).

$$\overline{\Sigma_1^0} = \overline{\{x \mid \exists y. R(x, y)\}}
= \{x \mid \neg \exists y. R(x, y)\}
= \{x \mid \forall y. \neg R(x, y)\}
= \Pi_1^0$$

As Σ_1^0 is the set of semidecidable problems, Π_1^0 is the set of co-semidecidable problems.

Example (Empty)

 $\mathsf{Empty} = \{ \lceil M \rceil \mid \forall x. \forall y. \neg \mathcal{T}(\lceil M \rceil, x, y) \} \text{ has two quantifiers.}$

Deltas

Delta

The set Δ_1^0 describes the intersection of Σ_1^0 and Π_1^0 .

From our characterisations of Σ^0_1 and Π^0_1 , we know this describes the set of decidable problems.

Relabeling

Moving Higher

Definitions

- Σ_2^0 is the set of all problems of form $\{x \mid \exists y. \forall z. R(x, y, z)\}.$
- Π_2^0 is the set of all problems of form $\{x \mid \forall y. \exists z. R(x, y, z)\}$.
- $\bullet \ \Delta_2^0 = \Sigma_2^0 \cap \Pi_2^0$

Note that $\Sigma_1^0, \Pi_1^0, \Delta_1^0$ are all $\subseteq \Delta_2^0$ (and therefore $\subseteq \Sigma_2^0$ and $\subseteq \Pi_2^0$). Why? (our R can simply "ignore" one of the parameters)

Example (Uniform Halting)

UH can be expressed as $\{ \lceil M \rceil \mid \forall w. \exists t. T(M, w, t) \}$.

Therefore $UH \in \Pi_2^0$.

The Arithmetical Hierarchy

An equivalent characterisation

We can define in terms of oracles:

- Δ⁰₂ is all problems that are decidable by some TM/RM with an oracle for some (co-)semi-decidable problem.
- Σ₂⁰ are all semidecidable problems by such a TM/RM.
- Π₂⁰ are all co-semidecidable problems by such a TM/RM.

Building up

In general, for any n > 1:

- Δ_n^0 is all problems that are decidable by some TM/RM with an oracle for some problem $\in \Sigma_{n-1}^0$.
- Σ_n^0 are all semidecidable problems by such a TM/RM.
- Π_n^0 are all co-semidecidable problems by such a TM/RM.

Alternation

Equivalently Σ_n^0 are all problems that can be phrased as some alternation of quantifiers, starting with \exists :

$$\{w \mid \exists x_1. \forall x_2. \exists x_3. \forall x_4. \ldots x_n. R(w, x_1, \ldots, x_n)\}$$

 Π_n^0 starts instead with \forall :

$$\{w \mid \forall x_1.\exists x_2.\forall x_3.\exists x_4....x_n. R(w,x_1,...,x_n)\}$$

Games

Alternation of formulae are connected fundamentally with games. When proving an $\exists x....$, **we** have a choice of what x is. When proving a $\forall x....$, **our opponent** has a choice of what x is.

Example (Pumping for CFLs)

If I is a CFL then:

 $\forall p. \exists w. \forall uvxyz. \forall i. |w| \geq p \wedge |vxy|$

Limitations of Oracles

Theorem

The arithmetic hierarchy is strict. That is, the nth level contains a language not in any level below n.

Note: *H* is in level 1 but not 0. Consider:

$$H_2 = \{ \langle \ulcorner M \urcorner, x \rangle \mid M$$
, a machine with oracle for H , halts on $x \}$
 $H_3 = \{ \langle \ulcorner M \urcorner, x \rangle \mid M$, a machine with oracle for H_2 , halts on $x \}$
...
 $H_n = \{ \langle \ulcorner M \urcorner, x \rangle \mid M$, a machine with oracle for H_{n-1} , halts on $x \}$

Each of these H_k -oracle machines cannot decide H_k or higher. And, $H_k \in \Sigma_k^0$.