

# Text Technologies for Data Science INFR11145

# **Laws of Text**

Instructor: Walid Magdy

24-Sep-2025

1

# **Lecture Objectives**

- Learn about some text laws
  - Zipf's law
  - · Benford's law
  - Heap's law
  - Clumping/contagion
- This lecture is practical



Walid Magdy, TTDS 2025/2026

## You can try with me ...

- Shell commands: cat, sort, uniq, grep
- Python (or alternative)
- Excel (or alternative)
- · Download the following:
  - Bible: http://www.gutenberg.org/cache/epub/10/pg10.txt



Walid Magdy, TTDS 2025/2026

3

#### Words' nature

- Word → basic unit to represent text
- Certain characteristics are observed for the words we use!
- These characteristics are very consistent, that we can apply laws for them
- These laws apply for:
  - Different languages
  - Different domains of text



Walid Magdy, TTDS 2025/2026

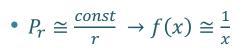
Л

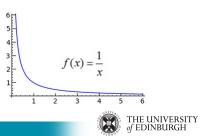
#### Frequency of words

- Some words are very frequent e.g. "the", "of", "to"
- Many words are less frequent e.g. "schizophrenia", "bazinga"
- ~50% terms appears once
- Frequency of words has hard exponential decay



Walid Magdy, TTDS 2025/2026


5


# Zipf's Law:

• For a given collection of text, ranking unique terms according to their frequency, then:

$$r \times P_r \cong const$$

- r, rank of term according to frequency
- $P_r$ , probability of appearance of term





Walid Magdy, TTDS 2025/2026

# Zipf's Law:

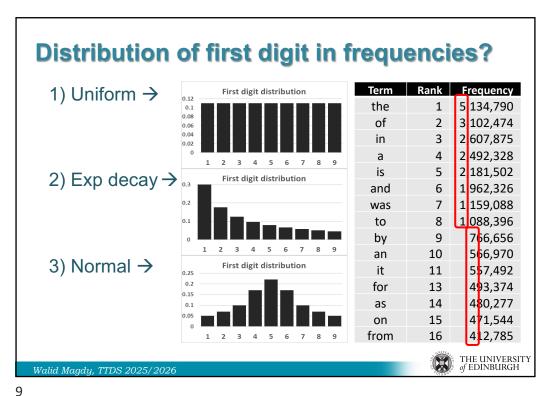
Wikipedia abstracts

→ 3.5M En abstracts

 $r \times P_r \cong const \rightarrow r \times freq_r \cong const$ 

| Term | Rank | Frequency | r x freq   |
|------|------|-----------|------------|
| the  | 1    | 5,134,790 | 5,134,790  |
| of   | 2    | 3,102,474 | 6,204,948  |
| in   | 3    | 2,607,875 | 7,823,625  |
| a    | 4    | 2,492,328 | 9,969,312  |
| is   | 5    | 2,181,502 | 10,907,510 |
| and  | 6    | 1,962,326 | 11,773,956 |
| was  | 7    | 1,159,088 | 8,113,616  |
| to   | 8    | 1,088,396 | 8,707,168  |
| by   | 9    | 766,656   | 6,899,904  |
| an   | 10   | 566,970   | 5,669,700  |
| it   | 11   | 557,492   | 6,132,412  |
| for  | 13   | 493,374   | 5,970,456  |
| as   | 14   | 480,277   | 6,413,862  |
| on   | 15   | 471,544   | 6,723,878  |
| from | 16   | 412,785   | 7,073,160  |
|      |      | MAIN      |            |

THE UNIVER


7

#### **Practical**

| Collection     | # words    | File size |
|----------------|------------|-----------|
| Bible          | 824,054    | 4.24 MB   |
| Wiki abstracts | 80,460,749 | 472 MB    |

Walid Magdy, TTDS 2025/2026



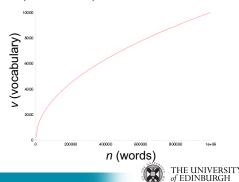


J

#### **Benford's Law:**

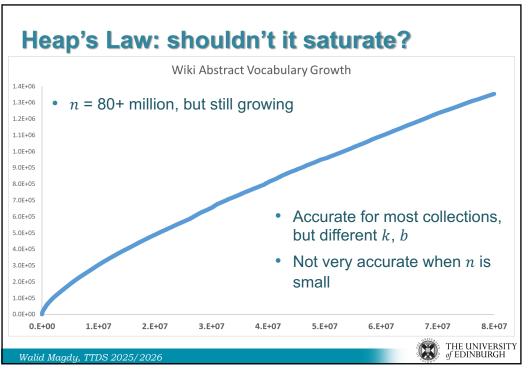
- First digit of a number follows a Zipf's like law!
  - Terms frequencies
  - Physical constants
  - Energy bills
  - Population numbers
- Benford's law:

$$P(d) = \log(1 + \frac{1}{d})$$


THE UNIVERSIT

Walid Magdy, TTDS 2025/2026

#### Heap's Law:


- While going through documents, the number of new terms noticed will reduce over time
- For a book/collection, while reading through, record:
  - n: number of words read
  - v: number of news words (unique words)
- Vocabulary growth:

$$v(n) = k \times n^b$$
 where,  $b < 1$  typically,  $0.4 < b < 0.7$ 



Walid Magdy, TTDS 2025/2026

11

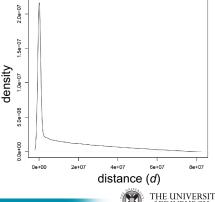


## **Clumping/Contagion in text**

- From Zipf's law, we notice:
  - Most words do not appear that much!
  - Once you see a word once → expect to see again!
  - · Words are like:
    - · Rare contagious disease
    - · Not, rare independent lightening
- · Words are rare events, but they are contagious

THE UNIVERSITY of EDINBURGH

Walid Magdy, TTDS 2025/2026


13

# **Clumping/Contagion in text**

- Wiki abstract collection
  - Identify terms appeared only twice
  - Measure distance between the two occurrences of the terms:

 $d = n_{occurence2} - n_{occurence1}$ 

- Plot density function of d
- Majority of terms appearing only twice appear close to each other.



Walid Magdy, TTDS 2025/2026

# **Applying the laws**

- Given a collection of 20 billion terms,
- What is the number of unique terms?

Heap's law:  $v(n) = k \times n^b$ , assume k = 0.25, b = 0.7

• What is the number of terms appearing once?

Walid Maadu, TTDS 2025/2026



15

#### **Summary**

- Text follows well-known phenomena
- Text Laws:
  - Zipf
  - Heap
  - Contagion in text
- Shell commands:
  - cat, zcat, gzcat, more, tr, sort, uniq, ">", "|", "[]"
- Try it on another language ...

l Magdu, TTDS 2025/2026



#### Recourses

- Text book:
  - Search engines: IR in practice → chapter 4
- Videos:
  - Zipf's law, Vsouce: <a href="https://www.youtube.com/watch?v=fCn8zs912OE">https://www.youtube.com/watch?v=fCn8zs912OE</a>
  - Benford's law, Numberphile: https://www.youtube.com/watch?v=XXjlR2OK1kM
- Tools:
  - Unix commands for windows https://sourceforge.net/projects/unxutils



Walid Magdy, TTDS 2025/2026