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Sets and dictionaries

Two important datatypes ...

» (Finite) sets of items of a given type X. E.g. {3,5}

contains
insert
delete
isEmpty

: X — bool
: X — void
: X — void
:void — bool
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Two important datatypes ...

» (Finite) sets of items of a given type X. E.g. {3,5} = {5,3}

contains
insert
delete
isEmpty

: X — bool
: X — void
: X — void
:void — bool
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Sets and dictionaries

Two important datatypes ...

» (Finite) sets of items of a given type X. E.g. {3,5} = {5,3}

contains
insert
delete
isEmpty

: X — bool
: X — void
: X — void
:void — bool

» Dictionaries (i.e. lookup tables) mapping keys of type X to

values of type Y.

lookup
insert
delete
isEmpty

X=>Y

: X *xY — void
: X — void

: void — bool
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Sets and dictionaries in Python

Beatles = {’John’, ’Paul’, ’George’, ’Ringo’}
’George’ in Beatles # returns True
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Sets and dictionaries in Python

Beatles = {’John’, ’Paul’, ’George’, ’Ringo’}

’George’ in Beatles # returns True
BeatlesYearsOfBirth =

{’John’:1940, ’Paul’:1942, ’George’:1943, ’Ringo’:1940}
BeatlesYearsOfBirth[’George’] # returns 1943
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Sets and dictionaries via sorted arrays
Could implement sets/dictionaries via (any impl of) lists:
Beatles Rep = [’John’, ’Paul’, ’George’, ’Ringo’]
BeatlesYearsOfBirth Rep = [(’John’,1940), (’Paul’,1942), ....]
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Sets and dictionaries via sorted arrays
Could implement sets/dictionaries via (any impl of) lists:
Beatles Rep = [’John’, ’Paul’, ’George’, ’Ringo’]
BeatlesYearsOfBirth Rep = [(’John’,1940), (’Paul’,1942), ....]

But average-case time for contains/lookup will be ©(n) (terrible!)
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Sets and dictionaries via sorted arrays
Could implement sets/dictionaries via (any impl of) lists:
Beatles Rep = [’John’, ’Paul’, ’George’, ’Ringo’]
BeatlesYearsOfBirth Rep = [(’John’,1940), (’Paul’,1942), ....]

But average-case time for contains/lookup will be ©(n) (terrible!)

Much better if arrays are sorted (by key).
Can then use binary search.
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Sets and dictionaries via sorted arrays
Could implement sets/dictionaries via (any impl of) lists:
Beatles Rep = [’John’, ’Paul’, ’George’, ’Ringo’]
BeatlesYearsOfBirth Rep = [(’John’,1940), (’Paul’,1942), ....]

But average-case time for contains/lookup will be ©(n) (terrible!)

Much better if arrays are sorted (by key).
Can then use binary search. E.g. for dictionaries:

binarySearch(A key,i,j): # searches A[i], ..., A[j—1]
ifj—1 =i
if A[i].key = key then return A[i].value else FAIL
else
k=[i+j/2 |
if key < A[k].key then return binarySearch(A key,i k)
else return binarySearch(A key,k,j)
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Sets and dictionaries via sorted arrays
Could implement sets/dictionaries via (any impl of) lists:
Beatles Rep = [’John’, ’Paul’, ’George’, ’Ringo’]
BeatlesYearsOfBirth Rep = [(’John’,1940), (’Paul’,1942), ....]

But average-case time for contains/lookup will be ©(n) (terrible!)

Much better if arrays are sorted (by key).
Can then use binary search. E.g. for dictionaries:

binarySearch(A key,i,j): # searches A[i], ..., A[j—1]
ifj—1 =i
if A[i].key = key then return A[i].value else FAIL
else
k=[i+j/2 |
if key < A[k].key then return binarySearch(A key,i k)
else return binarySearch(A key,k,j)

Using this, contains/lookup have worst-case time ©(lg n).

IADS Lecture 8 Slide 4



Sets and dictionaries via sorted arrays
Could implement sets/dictionaries via (any impl of) lists:
Beatles Rep = [’John’, ’Paul’, ’George’, ’Ringo’]
BeatlesYearsOfBirth Rep = [(’John’,1940), (’Paul’,1942), ....]

But average-case time for contains/lookup will be ©(n) (terrible!)

Much better if arrays are sorted (by key).
Can then use binary search. E.g. for dictionaries:

binarySearch(A key,i,j): # searches A[i], ..., A[j—1]
ifj—1 =i
if A[i].key = key then return A[i].value else FAIL
else
k=[i+j/2 |
if key < A[k].key then return binarySearch(A key,i k)
else return binarySearch(A key,k,j)

Using this, contains/lookup have worst-case time ©(lg n).
But insert/delete still costly. Can we do better?
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Hash tables

Suppose our keys are strings (e.g. people's names). Number K of
potential keys is vast — number n of actual keys ‘currently in use’
much smaller.
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Hash tables

Suppose our keys are strings (e.g. people's names). Number K of
potential keys is vast — number n of actual keys ‘currently in use’
much smaller.

Really silly idea: Give a way of converting strings s to integers 1(s)
(E.g. treat ASCII characters as digits to base 128). Then store value
associated with s in a big array at position (s).
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Hash tables

Suppose our keys are strings (e.g. people's names). Number K of
potential keys is vast — number n of actual keys ‘currently in use’
much smaller.

Really silly idea: Give a way of converting strings s to integers 1(s)
(E.g. treat ASCII characters as digits to base 128). Then store value
associated with s in a big array at position (s).

Impractical: K normally far too large, and most of the array would
be unused.
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Hash tables

Suppose our keys are strings (e.g. people's names). Number K of
potential keys is vast — number n of actual keys ‘currently in use’
much smaller.

Really silly idea: Give a way of converting strings s to integers 1(s)
(E.g. treat ASCII characters as digits to base 128). Then store value
associated with s in a big array at position (s).

Impractical: K normally far too large, and most of the array would
be unused.

More sensible idea: Choose some hash function # mapping potential
keys s to integers 0,...,m — 1 (hash codes), where m ~ n.
Want # to be easy to compute. E.g. we might define:

#(s) = 1(s) mod m
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Hash tables

Suppose our keys are strings (e.g. people's names). Number K of
potential keys is vast — number n of actual keys ‘currently in use’
much smaller.

Really silly idea: Give a way of converting strings s to integers 1(s)
(E.g. treat ASCII characters as digits to base 128). Then store value
associated with s in a big array at position (s).

Impractical: K normally far too large, and most of the array would
be unused.

More sensible idea: Choose some hash function # mapping potential
keys s to integers 0,...,m — 1 (hash codes), where m ~ n.
Want # to be easy to compute. E.g. we might define:

#(s) = 1(s) mod m

Then try to use an array A of size m, storing the entry for key s at
position #(s) in A.
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Hashes and clashes
Problem: What if #(s) = #(t) for two keys s, t?

IADS Lecture 8 Slide 6



Hashes and clashes
Problem: What if #(s) = #(t) for two keys s, t?

How likely are clashes to arise? E.g. if we took e.g. m ~ 5n (and
accepted the space wastage), would clashes be improbable?
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Hashes and clashes
Problem: What if #(s) = #(t) for two keys s, t?

How likely are clashes to arise? E.g. if we took e.g. m ~ 5n (and
accepted the space wastage), would clashes be improbable?

Example: Keys are people, m = 366, #(p) = birthday of p.

How many people must there be for probability of shared birthday
to be > 1/27 (Assume uniform distrib.)
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Hashes and clashes
Problem: What if #(s) = #(t) for two keys s, t?

How likely are clashes to arise? E.g. if we took e.g. m ~ 5n (and
accepted the space wastage), would clashes be improbable?

Example: Keys are people, m = 366, #(p) = birthday of p.

How many people must there be for probability of shared birthday
to be > 1/27 (Assume uniform distrib.)

Answer: Just 23! (Sometimes called the birthday paradox.)
See CLRS 5.4.1 for analysis (if you're interested).
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Hashes and clashes
Problem: What if #(s) = #(t) for two keys s, t?

How likely are clashes to arise? E.g. if we took e.g. m ~ 5n (and
accepted the space wastage), would clashes be improbable?

Example: Keys are people, m = 366, #(p) = birthday of p.

How many people must there be for probability of shared birthday
to be > 1/27 (Assume uniform distrib.)

Answer: Just 23! (Sometimes called the birthday paradox.)
See CLRS 5.4.1 for analysis (if you're interested).

Question: In a class of 347 (assuming uniform distrib), what would
be the probability of a birthday shared by 2 people? By 3 people?
By 4,567, ...7
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Hashes and clashes
Problem: What if #(s) = #(t) for two keys s, t?

How likely are clashes to arise? E.g. if we took e.g. m ~ 5n (and
accepted the space wastage), would clashes be improbable?

Example: Keys are people, m = 366, #(p) = birthday of p.

How many people must there be for probability of shared birthday
to be > 1/27 (Assume uniform distrib.)

Answer: Just 23! (Sometimes called the birthday paradox.)
See CLRS 5.4.1 for analysis (if you're interested).

Question: In a class of 347 (assuming uniform distrib), what would
be the probability of a birthday shared by 2 people? By 3 people?
By 4,567, ...7

| 2 3 | 4 |5 ]6 |7|
| > (100 —10712%)% | > 99.9999% | > 99.8% | 66% | 15% | 2% |
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Dealing with clashes

So we must accept clashes (a.k.a. collisions) as a fact of life.
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Dealing with clashes

So we must accept clashes (a.k.a. collisions) as a fact of life.
Solution 1: Store a list of entries (or bucket) for each hash value.

buckel: Ligt,
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Dealing with clashes

So we must accept clashes (a.k.a. collisions) as a fact of life.

Solution 1: Store a list of entries (or bucket) for each hash value.
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(Omit value components if it's just a set.)
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Dealing with clashes

So we must accept clashes (a.k.a. collisions) as a fact of life.

Solution 1: Store a list of entries (or bucket) for each hash value.

A buckel Lt

, Vi 5
[ko] vo]
P = —

(Omit value components if it's just a set.)

Write n for number of entries, m for array size.
The ratio & = n/m is called the load on the hash table:
may be <1 or > 1.
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Dealing with clashes

So we must accept clashes (a.k.a. collisions) as a fact of life.

Solution 1: Store a list of entries (or bucket) for each hash value.

(Omit value components if it's just a set.)

Write n for number of entries, m for array size.
The ratio @« = n/m is called the load on the hash table:
may be <1 or > 1.

If we've decided on a desired load a, can ‘expand-and-rehash’ any
time n gets too large (amortized cost is reasonable).
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Bucket-list hash tables: some analysis

Recall: n table entries, m hash codes, & = n/m.
Write b; for number of entries in ith bucket.
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Bucket-list hash tables: some analysis

Recall: n table entries, m hash codes, & = n/m.
Write b; for number of entries in ith bucket.

Let's analyse average time for an unsuccessful lookup.
Assume that for k not in the table, #(k) equally likely
to be any of the m hash codes.
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Bucket-list hash tables: some analysis

Recall: n table entries, m hash codes, & = n/m.
Write b; for number of entries in ith bucket.

Let's analyse average time for an unsuccessful lookup.
Assume that for k not in the table, #(k) equally likely
to be any of the m hash codes.

If #(k) =i, lookup will do b; key comparisons if unsuccessful.

So average number of key comparisons is

1m—1
—Zb,- = n/m = «
M
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Bucket-list hash tables: some analysis

Recall: n table entries, m hash codes, & = n/m.
Write b; for number of entries in ith bucket.

Let's analyse average time for an unsuccessful lookup.
Assume that for k not in the table, #(k) equally likely
to be any of the m hash codes.

If #(k) =i, lookup will do b; key comparisons if unsuccessful.

So average number of key comparisons is

1m—1
—Zb,- = n/m = «
M

If computing #(k) itself takes O(1) time, conclude that average
time for unsuccessful lookup is ©(«). (Thinking of & — 0.)
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Bucket-list hash tables: some analysis

Recall: n table entries, m hash codes, & = n/m.
Write b; for number of entries in ith bucket.

Let's analyse average time for an unsuccessful lookup.
Assume that for k not in the table, #(k) equally likely
to be any of the m hash codes.

If #(k) =i, lookup will do b; key comparisons if unsuccessful.

So average number of key comparisons is

1m—1
—Zb,- = n/m = «
M

If computing #(k) itself takes O(1) time, conclude that average
time for unsuccessful lookup is ©(«). (Thinking of & — 0.)

Can also show the same for successful lookup, assuming all keys
present in table are equally likely. See CLRS 11.2.
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Making a proper hash of it

Rarely true that all potential keys (e.g. strings) ‘equally probable’.
But in the interests of ‘balancing’ our hash table, we'd like the hash
codes 0,..., m—1 to be all equally likely.
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Making a proper hash of it

Rarely true that all potential keys (e.g. strings) ‘equally probable’.
But in the interests of ‘balancing’ our hash table, we'd like the hash
codes 0,..., m—1 to be all equally likely.

Bad choice: #(s) = «(s) mod 128. Effectively just last character of s.
So avoid powers of two!
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Making a proper hash of it

Rarely true that all potential keys (e.g. strings) ‘equally probable’.
But in the interests of ‘balancing’ our hash table, we'd like the hash
codes 0,..., m—1 to be all equally likely.

Bad choice: #(s) = «(s) mod 128. Effectively just last character of s.
So avoid powers of two!

Also not great: #(s) = 1(s) mod 127. Gives #(s) = #(t) whenever s, t
are anagrams. So #(‘algorithms’) = #(‘logarithms’).
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Making a proper hash of it

Rarely true that all potential keys (e.g. strings) ‘equally probable’.
But in the interests of ‘balancing’ our hash table, we'd like the hash
codes 0,..., m—1 to be all equally likely.

Bad choice: #(s) = «(s) mod 128. Effectively just last character of s.
So avoid powers of two!

Also not great: #(s) = 1(s) mod 127. Gives #(s) = #(t) whenever s, t
are anagrams. So #(‘algorithms’) = #(‘logarithms’).

Better: #(s) = u(s) mod 97. Primes not too close to powers of
two are reasonable.
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Making a proper hash of it

Rarely true that all potential keys (e.g. strings) ‘equally probable’.
But in the interests of ‘balancing’ our hash table, we'd like the hash
codes 0,..., m—1 to be all equally likely.

Bad choice: #(s) = «(s) mod 128. Effectively just last character of s.
So avoid powers of two!

Also not great: #(s) = 1(s) mod 127. Gives #(s) = #(t) whenever s, t
are anagrams. So #(‘algorithms’) = #(‘logarithms’).

Better: #(s) = u(s) mod 97. Primes not too close to powers of
two are reasonable.

Just the start of the delicate art of hash function design. ..
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Making a proper hash of it

Rarely true that all potential keys (e.g. strings) ‘equally probable’.
But in the interests of ‘balancing’ our hash table, we'd like the hash
codes 0,..., m—1 to be all equally likely.

Bad choice: #(s) = «(s) mod 128. Effectively just last character of s.
So avoid powers of two!

Also not great: #(s) = 1(s) mod 127. Gives #(s) = #(t) whenever s, t
are anagrams. So #(‘algorithms’) = #(‘logarithms’).

Better: #(s) = u(s) mod 97. Primes not too close to powers of
two are reasonable.

Just the start of the delicate art of hash function design. ..

But whatever we do, worst case (all keys hashing to same code)
is always terrible. A malicious user who knew your hash function
could force this to happen ...
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Open addressing and probing

Solution 2: Rather than keeping bucket lists outside the hash table,
store all items within the table itself (open addressing).
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Open addressing and probing

Solution 2: Rather than keeping bucket lists outside the hash table,
store all items within the table itself (open addressing).

To deal with clashes, we use not just a simple hash function #(k),
but a function #(k, i) where 0 < i < m. For a key k:

» #(k,0) is our first choice of hash value,

> #(k,1) is our second choice, etc.
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Open addressing and probing

Solution 2: Rather than keeping bucket lists outside the hash table,
store all items within the table itself (open addressing).

To deal with clashes, we use not just a simple hash function #(k),
but a function #(k, i) where 0 < i < m. For a key k:

» #(k,0) is our first choice of hash value,

> #(k,1) is our second choice, etc.

so that #(k,0),#(k,1),...,#(k,m — 1) is a permutation of
0,...,m—1. (Ideally, for a randomly chosen k, all m! permutations
should be equally likely.)
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Open addressing and probing

Solution 2: Rather than keeping bucket lists outside the hash table,
store all items within the table itself (open addressing).

To deal with clashes, we use not just a simple hash function #(k),
but a function #(k, i) where 0 < i < m. For a key k:

» #(k,0) is our first choice of hash value,

> #(k,1) is our second choice, etc.
so that #(k,0),#(k,1),...,#(k,m — 1) is a permutation of

0,...,m—1. (Ideally, for a randomly chosen k, all m! permutations
should be equally likely.)

To insert an item e with key k, probe A[#(k,0)], A[#(k,1)],...
until we find a free slot A[#(k, /)], then put e there.
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Open addressing and probing

Solution 2: Rather than keeping bucket lists outside the hash table,
store all items within the table itself (open addressing).

To deal with clashes, we use not just a simple hash function #(k),
but a function #(k, i) where 0 < i < m. For a key k:

» #(k,0) is our first choice of hash value,
> #(k,1) is our second choice, etc.
so that #(k,0),#(k,1),...,#(k,m — 1) is a permutation of

0,...,m—1. (Ideally, for a randomly chosen k, all m! permutations
should be equally likely.)

To insert an item e with key k, probe A[#(k,0)], A[#(k,1)],...
until we find a free slot A[#(k, /)], then put e there.

To lookup an item with key k, probe A[#(k,0)], A[#(k,1)],...
until we find either an item with key k, or free cell (lookup failed).
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Probing: example

Let's use an array A of size m = 10 to store a set of integers.

0

1

2

3

4

5

6

7

8 ]9 |

|

Probe function: #(k, i) = (k + i) mod 10.
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Probing: example

Let's use an array A of size m = 10 to store a set of integers.

0

1

2

3

4

5

6

7

8 ]9 |

|

Probe function: #(k, i) = (k + i) mod 10.

insert(49).

IADS Lecture 8 Slide 11



Probing: example

Let's use an array A of size m = 10 to store a set of integers.

0

1

2

3

4

5

6

7

8 ]9 |

|

Probe function: #(k, i) = (k + i) mod 10.
4(49,0) = O:

insert(49).
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Probing: example

Let's use an array A of size m = 10 to store a set of integers.

0

1

2

3

4

5

6

7

8

9 |

49 |

Probe function: #(k, i) = (k + i) mod 10.

insert(49).

#(49,0) = 9: free.
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Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|
49 |

Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28).
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Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|
49 |

Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28). #(28,0) =8:
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Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|
28 | 49 |

Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28). #(28,0) = 8: free.
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Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|
28 | 49 |

Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28). #(28,0) = 8: free.
insert(58).
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Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|
28 | 49 |

Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28). #(28,0) = 8: free.
insert(58). #(58,0) = 8: taken.
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Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|
28 | 49 |

Probe function: #(k, i) = (k + i) mod 10.

insert(49). #(49,0) = 9: free.

insert(28). #(28,0) = 8: free.

insert(58). #(58,0) = 8: taken. #(58,1) = 9: taken.
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Probing: example

Let's use an array A of size m = 10 to store a set of integers.

0

1

2

3

4

5

6

7

8

9 |

58

28

49 |

Probe function: #(k,i) =
#(49,0) = 9: free.
#(28,0) = 8: free.
insert(58). #(58,0) = 8: taken.
#(

insert(49).
insert(28).

(k + i) mod 10.

58,2) = 0: free.

#(58,1) = 9: taken.
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Probing: example

Let's use an array A of size m = 10 to store a set of integers.
0|1|2]3]4|5]6]7|8]09]|

58 28 | 49 |
Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28). #(28,0) = 8: free.
insert(58). #(58,0) = 8: taken. #(58,1) = 9: taken.
#(58,2) = 0: free.
contains(28).
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Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|

58 28 | 49 |
Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28). #(28,0) = 8: free.
insert(58). #(58,0) = 8: taken. #(58,1) = 9: taken.
#(58,2) = 0: free.

contains(28). #(28,0) =8, A[8] = 28.

IADS Lecture 8 Slide 11



Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|

58 28 | 49 |
Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28). #(28,0) = 8: free.
insert(58). #(58,0) = 8: taken. #(58,1) = 9: taken.
#(58,2) = 0: free.

contains(28). #(28,0) =8, A[8] = 28. So true.
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Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|

58 28 | 49 |
Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28). #(28,0) = 8: free.
insert(58). #(58,0) = 8: taken. #(58,1) = 9: taken.
#(58,2) = 0: free.
contains(28). #(28,0) =8, A[8] = 28. So true.
contains(58).
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Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|

58 28 | 49 |
Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28). #(28,0) = 8: free.
insert(58). #(58,0) = 8: taken. #(58,1) = 9: taken.
#(58,2) = 0: free.

contains(28). #(28,0) =8, A[8] = 28. So true.
contains(58). #(58,0) = 8, A[8] = 28 # 58.
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Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|

58 28 | 49 |
Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28). #(28,0) = 8: free.
insert(58). #(58,0) = 8: taken. #(58,1) = 9: taken.
#(58,2) = 0: free.

contains(28). #(28,0) =8, A[8] = 28. So true.
contains(58). #(58,0) = 8, A[8] = 28 # 58.
#(58,1) =9, A[9] = 49 # 58.
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Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|

58 28 | 49 |
Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28). #(28,0) = 8: free.
insert(58). #(58,0) = 8: taken. #(58,1) = 9: taken.
#(58,2) = 0: free.

contains(28). #(28,0) =8, A[8] = 28. So true.

contains(58). #(58,0) = 8, A[8] = 28 # 58.
#(58,1) =9, A[9] = 49 # 58.
#(58,2) = 0: A[0] = 58. So true.
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Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|

58 28 | 49 |
Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28). #(28,0) = 8: free.
insert(58). #(58,0) = 8: taken. #(58,1) = 9: taken.
#(58,2) = 0: free.

contains(28). #(28,0) =8, A[8] = 28. So true.
contains(58). #(58,0) = 8, A[8] = 28 # 58.
#(58,1) =9, A[9] = 49 # 58.
#(58,2) = 0: A[0] = 58. So true.
contains(39).
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Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|

58 28 | 49 |
Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28). #(28,0) = 8: free.
insert(58). #(58,0) = 8: taken. #(58,1) = 9: taken.
#(58,2) = 0: free.

contains(28). #(28,0) =8, A[8] = 28. So true.

contains(58). #(58,0) = 8, A[8] = 28 # 58.
#(58,1) =9, A[9] = 49 # 58.
#(58,2) = 0: A[0] = 58. So true.

contains(39). #(39,0) =9, A[9] = 49 # 39.
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Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|

58 28 | 49 |
Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28). #(28,0) = 8: free.
insert(58). #(58,0) = 8: taken. #(58,1) = 9: taken.
#(58,2) = 0: free.

contains(28). #(28,0) =8, A[8] = 28. So true.

contains(58). #(58,0) = 8, A[8] = 28 # 58.
#(58,1) =9, A[9] = 49 # 58.
#(58,2) = 0: A[0] = 58. So true.

contains(39). #(39,0) =9, A[9] = 49 # 39.
#(39,1) =0, A[0] = 58 # 39.
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Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|

58 28 | 49 |
Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28). #(28,0) = 8: free.
insert(58). #(58,0) = 8: taken. #(58,1) = 9: taken.
#(58,2) = 0: free.

contains(28). #(28,0) =8, A[8] = 28. So true.
contains(58). #(58,0) = 8, A[8] = 28 # 58.

#(58,1) =9, A[9] = 49 # 58.

#(58,2) = 0: A[0] = 58. So true.
contains(39). #(39,0) =9, A[9] = 49 # 39.

#(39,1) =0, A[0] = 58 # 39.
#(39,2) =1, A[1] free. So false.
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Probing: pros and cons

» Expected number of probes for insert (and hence for lookup)
stays low until table is nearly full. (Can show it's 1/(1 — «) for
unsuccessful lookup; less for successful one.)
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» Expected number of probes for insert (and hence for lookup)
stays low until table is nearly full. (Can show it's 1/(1 — «) for
unsuccessful lookup; less for successful one.)

» No need for pointers. The memory this saves can be ‘spent’
on increasing table size m and so decreasing load « . ..

So compared to bucket lists, get faster lookup for same
amount of memory.
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» No need for pointers. The memory this saves can be ‘spent’
on increasing table size m and so decreasing load « . ..

So compared to bucket lists, get faster lookup for same
amount of memory.

» However, delete is a pain for the probing approach.
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» Expected number of probes for insert (and hence for lookup)
stays low until table is nearly full. (Can show it's 1/(1 — «) for
unsuccessful lookup; less for successful one.)

» No need for pointers. The memory this saves can be ‘spent’
on increasing table size m and so decreasing load « . ..
So compared to bucket lists, get faster lookup for same
amount of memory.

» However, delete is a pain for the probing approach.

» Design of probing functions is again a delicate art
(linear probing, quadratic probing, double hashing, ...).
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Probing: pros and cons

» Expected number of probes for insert (and hence for lookup)
stays low until table is nearly full. (Can show it's 1/(1 — «) for
unsuccessful lookup; less for successful one.)

» No need for pointers. The memory this saves can be ‘spent’
on increasing table size m and so decreasing load « . ..

So compared to bucket lists, get faster lookup for same
amount of memory.

» However, delete is a pain for the probing approach.
» Design of probing functions is again a delicate art
(linear probing, quadratic probing, double hashing, ...).

See CLRS 11.4 for more details.
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Radical alternative: Perfect hashing

» All the approaches we've mentioned are bad in the worst case:
size of bucket/sequence of probes can be of length n.
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» All the approaches we've mentioned are bad in the worst case:
size of bucket/sequence of probes can be of length n.

> Even in typical cases, probably some buckets will be large
relative to «v. (Birthday paradox!)
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Radical alternative: Perfect hashing

» All the approaches we've mentioned are bad in the worst case:
size of bucket/sequence of probes can be of length n.

> Even in typical cases, probably some buckets will be large
relative to «v. (Birthday paradox!)

If we could avoid clashes altogether, these problems would vanish!
Would get worst-case ©(1) lookup.
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Radical alternative: Perfect hashing

» All the approaches we've mentioned are bad in the worst case:
size of bucket/sequence of probes can be of length n.

> Even in typical cases, probably some buckets will be large
relative to «v. (Birthday paradox!)

If we could avoid clashes altogether, these problems would vanish!
Would get worst-case ©(1) lookup.

If set of keys is static (no insert/delete required), may be worth
finding a perfect hash function (no clashes) for this set of keys.
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Radical alternative: Perfect hashing

» All the approaches we've mentioned are bad in the worst case:
size of bucket/sequence of probes can be of length n.

> Even in typical cases, probably some buckets will be large
relative to «v. (Birthday paradox!)

If we could avoid clashes altogether, these problems would vanish!
Would get worst-case ©(1) lookup.

If set of keys is static (no insert/delete required), may be worth
finding a perfect hash function (no clashes) for this set of keys.

As part of Coursework 1, we'll explore a modern approach to perfect
hashing.
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Reading:

Roughgarden 12.1-12.4 (good!)

CLRS Chapter 11, omitting theorems and their proofs, except
for Theorem 11.1 which corresponds to slide 8.
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