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Sets and dictionaries

Two important datatypes . . .

▶ (Finite) sets of items of a given type X . E.g. {3, 5}

= {5, 3}

contains : X → bool

insert : X → void

delete : X → void

isEmpty : void → bool

▶ Dictionaries (i.e. lookup tables) mapping keys of type X to
values of type Y .

lookup : X → Y
insert : X ∗ Y → void

delete : X → void

isEmpty : void → bool
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Sets and dictionaries in Python

Beatles = {’John’, ’Paul’, ’George’, ’Ringo’}
’George’ in Beatles # returns True

BeatlesYearsOfBirth =

{’John’:1940, ’Paul’:1942, ’George’:1943, ’Ringo’:1940}
BeatlesYearsOfBirth[’George’] # returns 1943
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Sets and dictionaries via sorted arrays
Could implement sets/dictionaries via (any impl of) lists:

Beatles Rep = [’John’, ’Paul’, ’George’, ’Ringo’]

BeatlesYearsOfBirth Rep = [(’John’,1940), (’Paul’,1942), ....]

But average-case time for contains/lookup will be Θ(n) (terrible!)

Much better if arrays are sorted (by key).
Can then use binary search. E.g. for dictionaries:

binarySearch(A,key,i,j): # searches A[i], ..., A[j−1]
if j−1 = i

if A[i].key = key then return A[i].value else FAIL
else

k = ⌊ i+j/2 ⌋
if key < A[k].key then return binarySearch(A,key,i,k)
else return binarySearch(A,key,k,j)

Using this, contains/lookup have worst-case time Θ(lg n).
But insert/delete still costly. Can we do better?
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Hash tables
Suppose our keys are strings (e.g. people’s names). Number K of
potential keys is vast — number n of actual keys ‘currently in use’
much smaller.

Really silly idea: Give a way of converting strings s to integers ı(s)
(E.g. treat ASCII characters as digits to base 128). Then store value
associated with s in a big array at position ı(s).

Impractical: K normally far too large, and most of the array would
be unused.

More sensible idea: Choose some hash function # mapping potential
keys s to integers 0, . . . ,m − 1 (hash codes), where m ∼ n.
Want # to be easy to compute. E.g. we might define:

#(s) = ı(s) mod m

Then try to use an array A of size m, storing the entry for key s at
position #(s) in A.
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Hashes and clashes

Problem: What if #(s) = #(t) for two keys s, t?

How likely are clashes to arise? E.g. if we took e.g. m ∼ 5n (and
accepted the space wastage), would clashes be improbable?

Example: Keys are people, m = 366, #(p) = birthday of p.

How many people must there be for probability of shared birthday
to be > 1/2? (Assume uniform distrib.)

Answer: Just 23! (Sometimes called the birthday paradox.)

See CLRS 5.4.1 for analysis (if you’re interested).

Question: In a class of 347 (assuming uniform distrib), what would
be the probability of a birthday shared by 2 people? By 3 people?
By 4, 5, 6, 7, . . . ?

2 3 4 5 6 7

> (100− 10−123)% > 99.9999% > 99.8% 66% 15% 2%
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Dealing with clashes
So we must accept clashes (a.k.a. collisions) as a fact of life.

Solution 1: Store a list of entries (or bucket) for each hash value.

(Omit value components if it’s just a set.)

Write n for number of entries, m for array size.
The ratio α = n/m is called the load on the hash table:
may be ≤ 1 or > 1.

If we’ve decided on a desired load α, can ‘expand-and-rehash’ any
time n gets too large (amortized cost is reasonable).

IADS Lecture 8 Slide 7



Dealing with clashes
So we must accept clashes (a.k.a. collisions) as a fact of life.

Solution 1: Store a list of entries (or bucket) for each hash value.

(Omit value components if it’s just a set.)

Write n for number of entries, m for array size.
The ratio α = n/m is called the load on the hash table:
may be ≤ 1 or > 1.

If we’ve decided on a desired load α, can ‘expand-and-rehash’ any
time n gets too large (amortized cost is reasonable).

IADS Lecture 8 Slide 7



Dealing with clashes
So we must accept clashes (a.k.a. collisions) as a fact of life.

Solution 1: Store a list of entries (or bucket) for each hash value.

(Omit value components if it’s just a set.)

Write n for number of entries, m for array size.
The ratio α = n/m is called the load on the hash table:
may be ≤ 1 or > 1.

If we’ve decided on a desired load α, can ‘expand-and-rehash’ any
time n gets too large (amortized cost is reasonable).

IADS Lecture 8 Slide 7



Dealing with clashes
So we must accept clashes (a.k.a. collisions) as a fact of life.

Solution 1: Store a list of entries (or bucket) for each hash value.

(Omit value components if it’s just a set.)

Write n for number of entries, m for array size.
The ratio α = n/m is called the load on the hash table:
may be ≤ 1 or > 1.

If we’ve decided on a desired load α, can ‘expand-and-rehash’ any
time n gets too large (amortized cost is reasonable).

IADS Lecture 8 Slide 7



Dealing with clashes
So we must accept clashes (a.k.a. collisions) as a fact of life.

Solution 1: Store a list of entries (or bucket) for each hash value.

(Omit value components if it’s just a set.)

Write n for number of entries, m for array size.
The ratio α = n/m is called the load on the hash table:
may be ≤ 1 or > 1.

If we’ve decided on a desired load α, can ‘expand-and-rehash’ any
time n gets too large (amortized cost is reasonable).

IADS Lecture 8 Slide 7



Bucket-list hash tables: some analysis

Recall: n table entries, m hash codes, α = n/m.
Write bi for number of entries in ith bucket.

Let’s analyse average time for an unsuccessful lookup.
Assume that for k not in the table, #(k) equally likely
to be any of the m hash codes.

If #(k) = i , lookup will do bi key comparisons if unsuccessful.

So average number of key comparisons is

1

m

m−1∑
i=0

bi = n/m = α

If computing #(k) itself takes O(1) time, conclude that average
time for unsuccessful lookup is Θ(α). (Thinking of α → ∞.)

Can also show the same for successful lookup, assuming all keys
present in table are equally likely. See CLRS 11.2.
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Making a proper hash of it

Rarely true that all potential keys (e.g. strings) ‘equally probable’.
But in the interests of ‘balancing’ our hash table, we’d like the hash
codes 0, . . . ,m − 1 to be all equally likely.

Bad choice: #(s) = ı(s) mod 128. Effectively just last character of s.
So avoid powers of two!

Also not great: #(s) = ı(s) mod 127. Gives #(s) = #(t) whenever s, t
are anagrams. So #(‘algorithms’) = #(‘logarithms’).

Better: #(s) = ı(s) mod 97. Primes not too close to powers of
two are reasonable.

Just the start of the delicate art of hash function design. . .

But whatever we do, worst case (all keys hashing to same code)
is always terrible. A malicious user who knew your hash function
could force this to happen . . .
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Open addressing and probing

Solution 2: Rather than keeping bucket lists outside the hash table,
store all items within the table itself (open addressing).

To deal with clashes, we use not just a simple hash function #(k),
but a function #(k , i) where 0 ≤ i < m. For a key k :

▶ #(k, 0) is our first choice of hash value,

▶ #(k, 1) is our second choice, etc.

so that #(k , 0),#(k , 1), . . . ,#(k ,m − 1) is a permutation of
0, . . . ,m− 1. (Ideally, for a randomly chosen k , all m! permutations
should be equally likely.)

To insert an item e with key k , probe A[#(k, 0)],A[#(k , 1)], . . .
until we find a free slot A[#(k, i)], then put e there.

To lookup an item with key k, probe A[#(k, 0)],A[#(k , 1)], . . .
until we find either an item with key k, or free cell (lookup failed).
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Probing: example
Let’s use an array A of size m = 10 to store a set of integers.

0 1 2 3 4 5 6 7 8 9

58 28 49

Probe function: #(k , i) = (k + i) mod 10.

insert(49). #(49, 0) = 9: free.

insert(28). #(28, 0) = 8: free.

insert(58). #(58, 0) = 8: taken. #(58, 1) = 9: taken.
#(58, 2) = 0: free.

contains(28). #(28, 0) = 8, A[8] = 28. So true.

contains(58). #(58, 0) = 8, A[8] = 28 ̸= 58.
#(58, 1) = 9, A[9] = 49 ̸= 58.
#(58, 2) = 0: A[0] = 58. So true.

contains(39). #(39, 0) = 9, A[9] = 49 ̸= 39.
#(39, 1) = 0, A[0] = 58 ̸= 39.
#(39, 2) = 1, A[1] free. So false.
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#(39, 1) = 0, A[0] = 58 ̸= 39.

#(39, 2) = 1, A[1] free. So false.
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Probing: example
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0 1 2 3 4 5 6 7 8 9
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Probing: pros and cons

▶ Expected number of probes for insert (and hence for lookup)
stays low until table is nearly full. (Can show it’s 1/(1− α) for
unsuccessful lookup; less for successful one.)

▶ No need for pointers. The memory this saves can be ‘spent’
on increasing table size m and so decreasing load α . . .
So compared to bucket lists, get faster lookup for same
amount of memory.

▶ However, delete is a pain for the probing approach.

▶ Design of probing functions is again a delicate art
(linear probing, quadratic probing, double hashing, . . . ).

See CLRS 11.4 for more details.
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Radical alternative: Perfect hashing

▶ All the approaches we’ve mentioned are bad in the worst case:
size of bucket/sequence of probes can be of length n.

▶ Even in typical cases, probably some buckets will be large
relative to α. (Birthday paradox!)

If we could avoid clashes altogether, these problems would vanish!
Would get worst-case Θ(1) lookup.

If set of keys is static (no insert/delete required), may be worth
finding a perfect hash function (no clashes) for this set of keys.

As part of Coursework 1, we’ll explore a modern approach to perfect
hashing.
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Reading:
Roughgarden 12.1-12.4 (good!)
CLRS Chapter 11, omitting theorems and their proofs, except
for Theorem 11.1 which corresponds to slide 8.
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