Algorithms and Data Structures

Max Flow in Polynomial Time: The Edmonds-Karp Algorithm
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Running Time

The running time of FF is O(mF), where F is the value of the
maximum flow.

Since F < ¢, this is in fact O(mc¢).
Is this an efficient algorithm?

The running time is pseudopolynomial, as it runs in time polynomial
In 7 and the unary representation of the total capacity ¢.

It is fairly efficient, if in the numbers involved in the input are
reasonably small.



The Ford-Fulkerson Algorithm

Max-Flow

Initially set f(e) = 0 for all e in E.
While there exists an s-t path in the residual graph Gf

Choose such a path P
f’ = augment(f, P)

Update f to be f’
Update the residual graph to be Gf’

Endwhile

Return ( f)
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Max-Flow In polynomial time

We made the algorithm must faster by simply selecting the
shortest path with available capacity.

Can we always hope to do that?
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The Edmonds-Karp Algorithm

Max-Flow

Initially set f(e) = 0 for all e in E.
While there exists an s-t path in the residual graph Gf

Choose the shortest such path P
f’ = augment(f, P)

Update f to be f’
Update the residual graph to be Gf’

Endwhile

Return ( f)



Useful Lemma

Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network G = (V, E)
and consider any flow augmentation. For every node u € V'\ {s, ¢}, the length of the
shortest path df(s, 1) from s to u in the residual graph G given by f does not decrease.



Useful Lemma

Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network G = (V, E)
and consider any flow augmentation. For every node u € V'\ {s, ¢}, the length of the
shortest path df(s, 1) from s to u in the residual graph G given by f does not decrease.

Proof: Suppose that there exists some node for which it decreases with some flow
augmentation; let f to /1 be this augmentation.



Useful Lemma

Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network G = (V, E)
and consider any flow augmentation. For every node u € V'\ {s, ¢}, the length of the
shortest path df(s, 1) from s to u in the residual graph G given by f does not decrease.

Proof: Suppose that there exists some node for which it decreases with some flow
augmentation; let f to /1 be this augmentation.

Let v be the node with the minimum d,(s, v) for which d,(s, v) > d (s, v).



Useful Lemma

Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network G = (V, E)
and consider any flow augmentation. For every node u € V'\ {s, ¢}, the length of the
shortest path df(s, 1) from s to u in the residual graph G given by f does not decrease.

Proof: Suppose that there exists some node for which it decreases with some flow
augmentation; let f to /1 be this augmentation.

Let v be the node with the minimum d,(s, v) for which d,(s, v) > d (s, v).

Let p = s ~ u — v be a shortest path from s to v “via” u in GG, such that
d,(s,u) = d,(s,v) — 1 (i.e., u is the “previous” node on the path before v).



Useful Lemma

Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network G = (V, E)
and consider any flow augmentation. For every node u € V'\ {s, ¢}, the length of the
shortest path df(s, 1) from s to u in the residual graph G given by f does not decrease.

Proof: Suppose that there exists some node for which it decreases with some flow
augmentation; let f to /1 be this augmentation.

Let v be the node with the minimum d,(s, v) for which d,(s, v) > d (s, v).

Let p = s ~ u — v be a shortest path from s to v “via” u in GG, such that
d,(s,u) = d,(s,v) — 1 (i.e., u is the “previous” node on the path before v).

By the choice of v, we know that d,(s, u) > d/(s, u) (why?)



Useful Lemma

Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network G = (V, E)
and consider any flow augmentation. For every node u € V'\ {s, ¢}, the length of the
shortest path df(s, 1) from s to u in the residual graph G given by f does not decrease.

Proof: Suppose that there exists some node for which it decreases with some flow
augmentation; let f to /1 be this augmentation.

Let v be the node with the minimum d,(s, v) for which d,(s, v) > d (s, v).

Let p = s ~ u — v be a shortest path from s to v “via” u in GG, such that
d,(s,u) = d,(s,v) — 1 (i.e., u is the “previous” node on the path before v).

By the choice of v, we know that d,(s, u) > d/(s, u) (why?)

Suppose by contradiction that df(s, u) > d, (s, u). Where is the contradiction?)



Useful Lemma

By the choice of v, we know that d,(s, u) > d(s, u)

Suppose (1, V) E E, then:



Useful Lemma

By the choice of v, we know that d,(s, u) > d(s, u)
Suppose (1, V) E E, then:

df(s, V) < df(s, u)+1d(s,u)+1=d(s,v)



Useful Lemma

By the choice of v, we know that d,(s, u) > d(s, u)

Suppose (1, V) E E, then:

why?
df(s, V) < df(s, u)+1d(s,u)+1=d(s,v)



Useful Lemma

By the choice of v, we know that d,(s, u) > d(s, u)

Suppose (1, V) E E, then:

why? why?
df(s, V) < df(s, u)+1d(s,u)+1=d(s,v)



Useful Lemma

By the choice of v, we know that d,(s, u) > d(s, u)

Suppose (1, V) E E, then:

why? why? why?
df(s, V) < df(s, u)+1d(s,u)+1=d(s,v)



Useful Lemma

Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network G = (V, E)
and consider any flow augmentation. For every node u € V'\ {s, ¢}, the length of the
shortest path df(s, 1) from s to u in the residual graph G given by f does not decrease.

Proof: Suppose that there exists some node for which it decreases with some flow
augmentation; let f to /1 be this augmentation.

Let v be the node with the minimum d,(s, v) for which d,(s, v) > d (s, v).

Let p = s ~ u — v be a shortest path from s to v “via” u in GG, such that
d,(s,u) = d,(s,v) — 1 (i.e., u is the “previous” node on the path before v).

By the choice of v, we know that d,(s, u) > d/(s, u) (why?)

Suppose by contradiction that df(s, u) > d, (s, u). Where is the contradiction?)



Useful Lemma

Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network G = (V, E)
and consider any flow augmentation. For every node u € V'\ {s, ¢}, the length of the
shortest path df(s, 1) from s to u in the residual graph G given by f does not decrease.

Proof: Suppose that there exists some node for which it decreases with some flow
augmentation; let f to /1 be this augmentation.

Let v be the node with the minimum d,(s, v) for which d,(s, v) > d (s, v).

Letp = S‘ ~ U - a shortest path from s to v “via” u in G, such that
.., u is the “previous” node on the path before v).

By the choice of v, we know that d,(s, u) > d/(s, u) (why?)

Suppose by contradiction that df(s, u) > d, (s, u). Where is the contradiction?)



Useful Lemma

By the choice of v, we know that d,(s, u) > d(s, u)
Suppose (1, V) E E, then:

df(s, V) < df(s, u)+1d(s,u)+1=d(s,v)



Useful Lemma

Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network G = (V, E)
and consider any flow augmentation. For every node u € V'\ {s, ¢}, the length of the
shortest path df(s, 1) from s to u in the residual graph G given by f does not decrease.

Proof: Suppose that there exists some node for which it decreases with some flow
augmentation; let f to /1 be this augmentation.

Let v be the node with the minimum d,(s, v) for which d,(s, v) > d (s, v).

Let p = s ~ u — v be a shortest path from s to v “via” u in GG, such that
d,(s,u) = d,(s,v) — 1 (i.e., u is the “previous” node on the path before v).

By the choice of v, we know that d,(s, u) > d/(s, u) (why?)

Suppose by contradiction that df(s, u) > d, (s, u). Where is the contradiction?)



Useful Lemma

Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network G = (V, E)
and consider any flow augmentation. For every node u € V'\ {s, ¢}, the length of the
shortest path df(s, 1) from s to u in the residual graph G given by f does not decrease.

Proof: Suppose that there exists some node for which it decreases with some flow
augmentation; let f to /1 be this augmentation.

Let v be the node with the minimum d, (s, v) for w th,‘) S d(

Let p = s ~ u — v be a shortest path from s to v “via” u in GG, such that
d,(s,u) = d,(s,v) — 1 (i.e., u is the “previous” node on the path before v).

By the choice of v, we know that d,(s, u) > d/(s, u) (why?)

Suppose by contradiction that df(s, u) > d, (s, u). Where is the contradiction?)



Useful Lemma

By the choice of v, we know that d,(s, u) > d(s, u)
Suppose (1, V) E E, then:

df(s, V) < df(s, u)+1d(s,u)+1=d(s,v)



Useful Lemma

By the choice of v, we know that d,(s, u) > d(s, u)
Suppose (1, V) E E, then:
df(s, V) < df(s, u)+1d(s,u)+1=d(s,v)

This is a contradiction, hence (u, v) & E;



Useful Lemma



Useful Lemma

So we have (1, v) € E; but
(l/l, V) ¢ Ef



Useful Lemma

So we have (1, v) € E; but
(l/l, V) ¢ Ef

Flow must have been routed
through (v, 1) (in the opposite
direction).



Useful Lemma

So we have (1, v) € E; but
(l/l, V) ¢ Ef

Flow must have been routed
through (v, 1) (in the opposite
direction).

That means that (v, 1) was part
of the chosen augmenting path,

which was a shortest (s, 7) path
in Gf.



Useful Lemma

So we have (1, v) € E; but
(u,v) & Ep

Flow must have been routed
through (v, 1) (in the opposite
direction).

That means that (v, 1) was part
of the chosen augmenting path,

which was a shortest (s, f) path
in Gy

A

Gy

o

G



Useful Lemma

That means that (v, 1) was part of
the chosen augmenting path, which

was a shortest (s, 7) path in G



Useful Lemma

That means that (v, 1) was part of
the chosen augmenting path, which

was a shortest (s, 7) path in G

Consider the sub-path (s, 1) of the
(s, 1) path above. This is also a
shortest (s, 1) path.




Useful Lemma

That means that (v, 1) was part of
the chosen augmenting path, which

was a shortest (s, 7) path in G

Consider the sub-path (s, 1) of the
(s, 1) path above. This is also a
shortest (s, 1) path.

We have




Useful Lemma

That means that (v, 1) was part of
the chosen augmenting path, which

was a shortest (s, 7) path in G

Consider the sub-path (s, 1) of the
(s, 1) path above. This is also a
shortest (s, 1) path.

We have
de(s,v) =




Useful Lemma

That means that (v, 1) was part of
the chosen augmenting path, which

was a shortest (s, 7) path in G

Consider the sub-path (s, 1) of the
(s, 1) path above. This is also a
shortest (s, 1) path.

We have
di(s,v) = di(s,u) — 1




Useful Lemma

That means that (v, 1) was part of
the chosen augmenting path, which

was a shortest (s, 7) path in G

Consider the sub-path (s, 1) of the
(s, 1) path above. This is also a
shortest (s, 1) path.

We have
d(s,v) = d(s,u) — 1 obvious




Useful Lemma

That means that (v, 1) was part of
the chosen augmenting path, which

was a shortest (s, 7) path in G

Consider the sub-path (s, 1) of the
(s, 1) path above. This is also a
shortest (s, 1) path.

We have
d(s,v) = d(s,u) — 1 obvious
S dh(S, l/l) —1




Useful Lemma

That means that (v, 1) was part of
the chosen augmenting path, which

was a shortest (s, 7) path in G

Consider the sub-path (s, 1) of the
(s, 1) path above. This is also a
shortest (s, 1) path.

We have
d(s,v) = d(s,u) — 1 obvious




Useful Lemma

Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network G = (V, E)
and consider any flow augmentation. For every node u € V'\ {s, ¢}, the length of the
shortest path df(s, 1) from s to u in the residual graph Gf given by f does not decrease.

Proof: Suppose that there exists some node for which it decreases with some flow
augmentation; let f to /1 be this augmentation.

Let v be the node with the minimum d,(s, v) for which d,(s, v) > d; (s, v).

Let p = s ~ u — v be a shortest path from s to v “via” u in G, such that
d,(s,u) = d,(s,v) — 1 (i.e., u is the “previous” node on the path before v).

By the choice of v, we know that d, (s, u) > df(s, 7).



Useful Lemma

Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network G = (V, E)
and consider any flow augmentation. For every node u € V'\ {s, ¢}, the length of the
shortest path df(s, 1) from s to u in the residual graph Gf given by f does not decrease.

Proof: Suppose that there exists some node for which it decreases with some flow
augmentation; let f to /1 be this augmentation.

Let v be the node with the minimum d,(s, v) for which d,(s, v) > d; (s, v).

Let p = s ~ u — v be a shortest path from s to v “via” u in G, such that
d,(s,u) = d,(s,v) — 1 (i.e., u is the “previous” node on the path before v).

dy(s, 1) > dy(s.u) ]

By the choice of v, we know t



Useful Lemma

That means that (v, 1) was part of
the chosen augmenting path, which

was a shortest (s, 7) path in G

Consider the sub-path (s, 1) of the
(s, 1) path above. This is also a
shortest (s, 1) path.

We have
d(s,v) = d(s,u) — 1 obvious




Useful Lemma

That means that (v, 1) was part of
the chosen augmenting path, which

was a shortest (s, 7) path in G

Consider the sub-path (s, 1) of the
(s, 1) path above. This is also a
shortest (s, 1) path.

We have

di(s,v) = dds,u) — 1 obvious
<d/(s,u)—1 why?
=d,(s,v) —2




Useful Lemma

That means that (v, 1) was part of
the chosen augmenting path, which

was a shortest (s, 7) path in G

Consider the sub-path (s, 1) of the
(s, 1) path above. This is also a
shortest (s, 1) path.

We have

di(s,v) = dds,u) — 1 obvious
<d/(s,u)—1 why?
=d,(s,v)—2 why?




Useful Lemma

Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network G = (V, E)
and consider any flow augmentation. For every node u € V'\ {s, ¢}, the length of the
shortest path df(s, 1) from s to u in the residual graph Gf given by f does not decrease.

Proof: Suppose that there exists some node for which it decreases with some flow
augmentation; let f to /1 be this augmentation.

Let v be the node with the minimum d,(s, v) for which d,(s, v) > d; (s, v).

Let p = s ~ u — v be a shortest path from s to v “via” u in G, such that
d,(s,u) = d,(s,v) — 1 (i.e., u is the “previous” node on the path before v).

By the choice of v, we know that d, (s, u) > df(s, 7).



Useful Lemma

Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network G = (V, E)
and consider any flow augmentation. For every node u € V'\ {s, ¢}, the length of the
shortest path df(s, 1) from s to u in the residual graph Gf given by f does not decrease.

Proof: Suppose that there exists some node for which it decreases with some flow
augmentation; let f to /1 be this augmentation.

Let v be the node with the minimum d,(s, v) for which d,(s, v) > d; (s, v).

Letp = S U — ,vbe a\ shortest path from s to v “via” u in G, such that
u is the “previous” node on the path before v).

By the choice of v, we know that d, (s, u) > df(s, 7).



Useful Lemma

That means that (v, 1) was part of
the chosen augmenting path, which

was a shortest (s, 7) path in G

Consider the sub-path (s, 1) of the
(s, 1) path above. This is also a
shortest (s, 1) path.

We have

di(s,v) = dds,u) — 1 obvious
<d/(s,u)—1 why?
=d,(s,v)—2 why?




Useful Lemma

That means that (v, 1) was part of
the chosen augmenting path, which

was a shortest (s, 7) path in G

Consider the sub-path (s, 1) of the
(s, 1) path above. This is also a
shortest (s, 1) path.

We have

d(s,v) = di(s,u) — 1 obvious
<d/(s,u)—1 why?
=dy(s,v) =2  why? => di(s,v) > ds, V) ‘




Useful Lemma

Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network G = (V, E)
and consider any flow augmentation. For every node u € V'\ {s, ¢}, the length of the
shortest path df(s, 1) from s to u in the residual graph Gf given by f does not decrease.

Proof: Suppose that there exists some node for which it decreases with some flow
augmentation; let f to /1 be this augmentation.

Let v be the node with the minimum d,(s, v) for which d,(s, v) > d; (s, v).

Let p = s ~ u — v be a shortest path from s to v “via” u in G, such that
d,(s,u) = d,(s,v) — 1 (i.e., u is the “previous” node on the path before v).

By the choice of v, we know that d, (s, u) > df(s, 7).



Useful Lemma

Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network G = (V, E)
and consider any flow augmentation. For every node u € V'\ {s, ¢}, the length of the
shortest path df(s, 1) from s to u in the residual graph Gf given by f does not decrease.

Proof: Suppose that there exists some node for which it decreases with some flow

augmentation; let  to /1 be this augmentation. .
J / J contradiction!

(ch d(s,v) > dy(s.v).

Let v be the node with the minimum d, (s, v) for w

Let p = s ~ u — v be a shortest path from s to v “via” u in G, such that
d,(s,u) = d,(s,v) — 1 (i.e., u is the “previous” node on the path before v).

By the choice of v, we know that d, (s, u) > df(s, 7).



Edmonds-Karp Running Time



Edmonds-Karp Running Time

Terminology: We will call an edge e critical, if ¢, = hottleneck(P, f).



Edmonds-Karp Running Time

Terminology: We will call an edge e critical, if ¢, = hottleneck(P, f).

What is the effect that augmenting the flow to f on P has on ¢ in the
residual graph Gf?



Edmonds-Karp Running Time

Terminology: We will call an edge e critical, if ¢, = hottleneck(P, f).

What is the effect that augmenting the flow to f on P has on ¢ in the
residual graph Gf?

It disappears from Gf.



Edmonds-Karp Running Time

Terminology: We will call an edge e critical, if ¢, = hottleneck(P, f).

What is the effect that augmenting the flow to f on P has on ¢ in the
residual graph Gf?

It disappears from Gf.

How many critical edges are there at least in P?



Edmonds-Karp Running Time

Terminology: We will call an edge e critical, if ¢, = hottleneck(P, f).

What is the effect that augmenting the flow to f on P has on ¢ in the
residual graph Gf?

It disappears from Gf.

How many critical edges are there at least in P?

At least 1.
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Terminology: We will call an edge e critical, if ¢, = hottleneck(P, f).

What is the effect that augmenting the flow to f on P has on ¢ in the
residual graph Gf?

It disappears from Gf.

How many critical edges are there at least in P?

At least 1.

How many times can an edge ¢ become critical during the execution of
the algorithm?
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By the lemma, we have d/(s, v) < d,(s, )

(recall: f was the flow when (1, V) became critical).
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low many flow augmentations?

O(mn).

low much time for each flow augmentation?
O(m+ n) = O(m).
Total running time?

O(nm?).



