
Algorithms and Data Structures
Modelling with Flows

Bipartite Matching

Maximum Bipartite Matching or Maximum matching on a
bipartite graph G.

Bipartite graphs
A graph G=(V,E) is bipartite if any only if it can be partitioned
into sets A and B such that each edge has one endpoint in
A and one endpoint in B.

Often, we write G=(L,R,E).

Bipartite Matching

Maximum Bipartite Matching or Maximum matching on a
bipartite graph G.

Matching: A subset M of the edges E such that each node
v of V appears in at most one edge e in E.

Maximum matching: A matching with maximum cardinality.
(i.e., |M| is maximised).

Example

A maximum matching A maximal matching

From matchings to flows

s t

From matchings to flows

s t

From matchings to flows

s t

From matchings to flows

s t

All capacities are set to 1.

From matchings to flows
Claim: Assume that there is a matching M of size k on G. Then
there is a flow f of value k in Gf.

Consider the matching  
 
M = {(u1, v1), (u2, v2), … , (uk, vk)}

Consider the flow such that  
 
f(s, ui) = f(ui, vi) = f(vi, t) = 1 for all i =1, … , k  
 
f(e) = 0 , otherwise

This is a feasible flow and obviously has value k.

From matchings to flows

s t

All capacities are set to 1.

From matchings to flows

s t

All capacities are set to 1.

From flows to matchings

Claim: Assume that there is a a flow f of value k in Gf. Then
there is a matching M of size k on G.

For an edge e, f(e) is either 0 or 1. (why?)

Consider the set M’ of edges (of the middle level) with  
f(e) = 1.

From flows to matchings

Consider the set M’ of edges with f(e) = 1.

Claim: |M’| = k.

s t

All capacities are set to 1.

From flows to matchings

Consider the set M’ of edges with f(e) = 1.

Claim: M’ is a matching.

s t

All capacities are set to 1.

Maximum Flow and
Maximum matching

The size of the maximum matching M in G is equal to the
value of the maximum flow f in Gf.

The edges of M are the edges that carry flow from A to B in
Gf.

What was the crucial part, that allows us to establish this?

The integrality theorem.

Running time

What is the running time of the algorithm?

By Edmonds - Karp, we get O(nm2).

Running time

What is the running time of the algorithm?

By Ford-Fulkerson, we get O(mF).

How large is F here?

It is at most max{|L|, |R|}.

Running time O(nm).

Polynomial Time Reduction
We are given a problem A that we want to solve.

We can reduce solving problem A to solving some other problem B.

This is a transformation of an instance of problem A to an instance of problem B.

Assume that we had an algorithm ALGB for solving problem B.

We can construct an algorithm ALGA for solving problem A, which

does the transformation,

uses the algorithm ALGB,

transforms the solution back to a solution to problem A.

If ALGA is a polynomial time algorithm, then this is a polynomial time reduction.

Pictorially
Problem A Problem B

ALGB

Do stuff …  
 

Do stuff … 
 

Do stuff…

Do stuff …

 
 

ALGA

ALGB

instance  
transformation

Polynomial Time Reduction
We are given a problem A that we want to solve.

We can reduce solving problem A to solving some other problem B.

This is a transformation of an instance of problem A to an instance of problem B.

Assume that we had an algorithm ALGB for solving problem B.

We can construct an algorithm ALGA for solving problem A, which

does the transformation,

uses the algorithm ALGB,

transforms the solution back to a solution to problem A.

If ALGA is a polynomial time algorithm, then this is a polynomial time reduction.

the maximum bipartite matching problem

the maximum flow problem

the MBP
problem the MF problem

the MBP
problem

the MF problem

the MBP
problem

We have

the MBP
problem

Baseball Elimination
In the baseball league, there are 4 teams with the following
number of wins: 
 
New York 92  
Baltimore 91 
Toronto 91 
Boston 90

There are five games left in the season.

NY vs BLT, NY vs TOR, BLT vs TOR, BLT vs BOS, TOR vs BOS

Question: Can Boston finish (possibly tied for) first?

Assume Boston wins all 
remaining games.

New York must lose all 
remaining games.

Baltimore and Toronto must 
win one game each.

Baltimore or Toronto must 
win one more game (BLT vs TOR).

The answer is no.

Baseball Elimination
In the baseball league, there are 4 teams with the following number of wins: 
 
New York 90  
Baltimore 88 
Toronto 87  
Boston 79

These are the games left in the season:

NY vs BLT

NY vs TOR 6 games

BLT vs TOR

BOS vs ANY 4 games (12 games total)

Question: Can Boston finish (possibly tied for) first?

Baseball Elimination
Generally:

We have a set S of teams.

For each team x in S, the current number of wins is wx.

For teams x and y in S, they still have to play gxy games
against each other.

We are given a designated team z.

Can z win the tournament (possibly in a tie?)

From baseball to flows

Observation: If there is a way for z to be first, there is a way
for z to be first when winning all remaining games.

Suppose that in the end, team z has m wins.

What are we looking for?

Is there an allocation of all the remaining g* games
(between the other teams) such that no team ends up
with more than m wins?

From baseball to flows

s

p1

…

p2

p3

pk

A pair of teams

From baseball to flows

s

p1

…

p2

p3

pk

x1

…

x2

x3

xh

t

A team

From baseball to flows

s

p1

…

p2

p3

pk

x1

…

x2

x3

xh

t

Two edges if teams in pj still have games to play between them.

From baseball to flows

s

p1

…

p2

p3

pk

x1

…

x2

x3

xh

t

Let pj = (x, y)

gxy

Leftover games

for the pair

m-wx

“Allowable” points for 
team x.

∞

Infinite capacity, no constraint.

From baseball to flows

s

p1

…

p2

p3

pk

x1

…

x2

x3

xh

t

gxy m-wx

∞

Find max flow in the network
Is the value at least g*?

If yes, winning is still possible
If no, winning is not possible

Why does this work?

Assume that the algorithm says yes.

The value of the flow is equal to the number of remaining
games. (why?)

From baseball to flows

s

p1

…

p2

p3

pk

x1

…

x2

x3

xh

t

gxy m-wx

∞

Find max flow in the network
Is the value at least g*?

If yes, winning is still possible
If no, winning is not possible

Why does this work?
Assume that the algorithm says yes.

The value of the flow is equal to the number of remaining
games. (why?)

The following hold:

A pair (x, y) will play exactly gxy games.

A team x will win at most m-wx games.

Team z can win.

Why does this work?

Assume that the algorithm says no.

The maximum flow has value < g*.

It is not possible to play all the remaining games without
giving some team x more than m - wx points.

Team z cannot win.

Another way to think about it

s

p1

…

p2

p3

pk

x1

…

x2

x3

xh

t

gxy m-wx

∞

Let’s look at the final residual graph. Why do we have no augmenting paths?

either this edge is saturated or this edge is saturated

Either all the games have been played, or some team cannot win any more games.

Example
In the baseball league, there are 4 teams with the following number of wins:` 
 
New York 90  
Baltimore 88 
Toronto 87  
Boston 79

There are five games left in the season.

NY vs BLT

NY vs TOR 6 games

BLT vs TOR

BOS vs ANY 4 games (12 games total)

Question: Can Boston finish (possibly tied for) first?

Example

s

NY vs TOR

…

NY vs BLT

BLT vs TOR

NY

TOR

BAL

t

6
1

∞

1

1

m = 91

4

3

Open pit mining
We extract blocks of earth from the surface, trying to find gold.

Each block z that we mine has

a value pz

a mining cost cz

Constraint: We can not mine a block z unless we mine the two
blocks x and y on top of it.

We want to earn as much money as possible.

Open pit mining

z

x y

From pits to flows

z

x y

s

t

From pits to flows

z

x y

s

t Is pz - cz > 0 ?

From pits to flows

z

x y

s

t

pz - cz

Yes

From pits to flows

z

x y

s

t

cz - pz

No

From pits to flows

z

x y

s

t

cx - px

pz - cz py - cy

From pits to flows

z

x y

s

t

∞ ∞

cx - px

pz - cz py - cy

From pits to cuts

z

x y

s

t

∞ ∞

cx - px

pz - cz py - cy

From pits to cuts
Consider an (S, T) cut C.

We will mine S - {s}.

If C is minimum, we cannot have nodes that are connected
with an infinite capacity edge in different sides of the cut.

If S contains z, it must contain x and y (needed to mine z).

Feasibility guaranteed by the above fact.

Optimality?

Optimality of our mining set
c(S, T) = ∑

z ∈ T : pz−cz > 0

(pz − cz) + ∑
z ∈ S : pz−cz < 0

(cz − pz)

From pits to cuts

z

x y

s

t

∞ ∞

cx - px

pz - cz py - cy

From pits to cuts

z

x y

s

t

∞ ∞

cx - px

pz - cz
py - cy

h g

value “lost”

cost “avoided”c(S, T) = ∑
z ∈ T : pz−cz > 0

(pz − cz) + ∑
z ∈ S : pz−cz < 0

(cz − pz)

cost payed

Sum of capacities 
of red edges crossing 

the cut.

Sum of capacities 
of green edges crossing 

the cut

Optimality of our mining set.
c(S, T) = ∑

z ∈ T : pz−cz > 0

(pz − cz) + ∑
z ∈ S : pz−cz < 0

(cz − pz)

c(S, T) = ∑
z ∈ S : pz−cz > 0

(pz − cz)Add and subtract this:

c(S, T) = ∑
z ∈ T : pz−cz > 0

(pz − cz) − ∑
z ∈ S : pz−cz < 0

(pz − cz)

c(S, T) = ∑
z ∈ V : pz−cz > 0

(pz − cz) − ∑
z ∈ S

(pz − cz)

constant Mining profit

Open-pit mining -
Summarising

Construct the flow network.

Run Ford-Fulkerson to find a maximum flow.

Find a minimum cut using the final residual graph.

Mine the blocks in the S part of the cut.

