Algorithms and Data Structures
Modelling with Flows

Bipartite Matching

Maximum Bipartite Matching or Maximum matching on a
bipartite graph G.

Bipartite graphs

A graph G=(V,E) is bipartite if any only if it can be partitioned
into sets A and B such that each edge has one endpoint in
A and one endpoint in B.

Often, we write G=(L,R,E).

Bipartite Matching

Maximum Bipartite Matching or Maximum matching on a
bipartite graph G.

Matching: A subset M of the edges E such that each node
v of V appears in at most one edge e in E.

Maximum matching: A matching with maximum cardinality.
(i.e., M| is maximised).

Example

A maximum matching A maximal matching

From matchings to flows

From matchings to flows

From matchings to flows

From matchings to flows

All capacities are set to 1.

From matchings to flows

Claim: Assume that there is a matching M of size k on G. Then
there is a flow f of value k in Gf.

Consider the matching

M = {(u1, v1), (U2, Vo), ..., (Uk, VK)}

Consider the flow such that

f(s, ui) = f(ui, viy =f(vi,) =1foralli=1, ..., k
fle) = 0, otherwise

This is a feasible flow and obviously has value k.

From matchings to flows

All capacities are set to 1.

From matchings to flows

All capacities are set to 1.

From flows to matchings

Claim: Assume that there is a a flow f of value k in G'. Then
there is a matching M of size k on G.

For an edge e, f(e) is either O or 7. (why?)

Consider the set M’ of edges (of the middle level) with
fle) = 1.

From flows to matchings

Consider the set M’ of edges with f(e) = 7.

Claim: [M’| = k.

All capacities are set to 1.

‘
\t
Y 4

3

From flows to matchings

Consider the set M’ of edges with f(e) = 7.

Claim: M’ is a matching.

All capacities are set to 1.

Maximum Flow and
Maximum matching

The size of the maximum matching M in G is equal to the
value of the maximum flow f in G.

The edges of M are the edges that carry flow from A to B in
Gf.

What was the crucial part, that allows us to establish this?

The integrality theorem.

Running time

What is the running time of the algorithm?

By Edmonds - Karp, we get O(nm?2).

Running time

What is the running time of the algorithm?
By Ford-Fulkerson, we get O(mF).
How large is F here?

It is at most max{|L|, |R|}.

Running time O(nm).

Polynomial Time Reduction

We are given a problem A that we want to solve.
We can reduce solving problem A to solving some other problem B.
This is a transformation of an instance of problem A to an instance of problem B.
Assume that we had an algorithm ALGB for solving problem B.
We can construct an algorithm ALGA for solving problem A, which
> does the transformation,
- uses the algorithm ALGBS,
> transforms the solution back to a solution to problem A.

If ALGAIs a polynomial time algorithm, then this is a polynomial time reduction.

Pictorially

Problem A Problem B

Do stuff ...

Do stuff ...

Instance
transformation

Do stuff...

Do stuff ...

ALGE

Polynomial Time Reduction

We are given the maximum bipartite matching problem

We can reduce solving e MBP 4 s61ving the maximum flow problem
problem
. . . the MBP .
This is a transformation of an instance of to an instance the MF problem
problem
We have an algorithm ALGB for solving the MF problem
We can construct an algorithm ALGA for solving | the MBP \yhich
problem
does the transformation,
uses the algorithm ALGB,
. , the MBP
transforms the solution back to a solution to | problem

If ALGAIs a polynomial time algorithm, then this is a polynomial time reduction.

Baseball Elimination

In the baseball league, there are 4 teams with the following

number of wins:
Assume Boston wins all Baltimore and Toronto must
New York 92 remaining games. win one game each.

Baltimore 91 New York must lose all Baltimore or Toronto must
Toronto 01 remaining games. win one more game (BLT vs TOR).

Boston 90
There are five games left in the season.

NY vs BLIT, NY vs TOR, BLT vs TOR, BLT vs BOS, TOR vs BOS

Question: Can Boston finish (possibly tied for) first?

The answer is no.

Baseball Elimination

In the baseball league, there are 4 teams with the following number of wins:

New York 90
Baltimore 88
Toronto 87
Boston 79

These are the games left in the season:
NY vs BLT
NY vs TOR 6 games
BLT vs TOR
BOS vs ANY 4 games (12 games total)

Question: Can Boston finish (possibly tied for) first?

Baseball Elimination

Generally:
We have a set S of teams.
For each team x in S, the current number of wins is wx.

For teams x and y in S, they still have to play gxy games
against each other.

We are given a designated team z.

Can z win the tournament (possibly in a tie?)

From baseball to flows

Observation: If there is a way for z to be first, there is a way
for z to be first when winning all remaining games.

Suppose that in the end, team z has m wins.
What are we looking for?

Is there an allocation of all the remaining g* games
(between the other teams) such that no team ends up
with more than m wins?

From baseball to flows

A pair of teams

\Q

From baseball to flows

AAAAA

From baseball to flows

Two edges if teams in p; still have games to play between them.

From baseball to flows

Infinite capacity, no constraint.

“Allowable” points for
team X.

Let pj = (X,)

Leftover games
for the pair

From baseball to flows

Find max flow in the network

Is the value at least g*?

If yes, winning is still possible
If no, winning is not possible

Why does this work?

Assume that the algorithm says yes.

The value of the flow is equal to the number of remaining
games. (why?)

From baseball to flows

Find max flow in the network

Is the value at least g*?

If yes, winning is still possible
If no, winning is not possible

Why does this work?

Assume that the algorithm says yes.

The value of the flow is equal to the number of remaining
games. (why?)

The following hold:
A pair (x, y) will play exactly gxy games.
A team x will win at most m-wyx games.

Team z can win.

Why does this work?

Assume that the algorithm says no.
The maximum flow has value < g*.

It is not possible to play all the remaining games without
giving some team x more than m - wx points.

Team z cannot win.

Another way to think about it

Let’s look at the final residual graph. Why do we have no augmenting paths?

or this edge is saturated
either this edge is saturated ,,g

Either all the games have been played, or some team cannot win any more games.

Example

In the baseball league, there are 4 teams with the following number of wins:’

New York 90
Baltimore 88
Toronto 87
Boston 79

There are five games left in the season.
NY vs BLT
NY vs TOR 6 games
BLT vs TOR
BOS vs ANY 4 games (12 games total)

Question: Can Boston finish (possibly tied for) first?

NY vs TOR

NY vs BLT

BLT vs TOR

Open pit mining

We extract blocks of earth from the surface, trying to find gold.
Each block z that we mine has

a value p;

a mining cost c;

Constraint: We can not mine a block z unless we mine the two
blocks x and y on top of it.

We want to earn as much money as possible.

Open pit mining

From pits to flows

From pits to flows

Ispz-¢c2:>07?

From pits to flows

Yes

From pits to flows

From pits to flows

From pits to flows

From pits to cuts

From pits to cuts

Consider an (S, T) cut C.
We will mine S - {s}.

If C is minimum, we cannot have nodes that are connected
with an infinite capacity edge in different sides of the cut.

If S contains z, it must contain x and y (heeded to mine z).
Feasibility guaranteed by the above fact.

Optimality?

Optimality of our mining set

«$.T)=) (p.—c)+ D, (c,—p)

z€T:p—c, >0 z€8:p—c, <0

Its to cuts

From p

Py - Cy

From pits to cuts

Sum of capacities
__ of green edges crossing
&4 the cut

c(S,T) = (p,—¢c)+ (c.=p) cost “avoided”

z€T:p—c,>0 z€8:p—c <0

Sum of capacities
of red edges crossing
the cut.

value “lost”

Optimality of our mining set.

«$.T)=) (p—c)+) (c.—p)

z€T:p—c, >0 z€8:p—c, <0

8. T)=) (p.—c) - D (p.—c)
z€T:p—c, >0 z€8:p—c, <0

Add and subtract this: c($,T) = Z (p,—c,)

z€8:p——,>0

constant Mining profit

Open-pit mining -
Summarising

Construct the flow network.
Run Ford-Fulkerson to find a maximum flow.
Find a minimum cut using the final residual graph.

Mine the blocks in the S part of the cut.

