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A problem

A company makes two products, X and Y, using two machines, A and B.

Each unit of product X requires 50min processing time on machine A and 30min
processing time on machine B.

Each unit of product Y requires 24min of processing time on machine A and 33min
of processing time on machine B.

At the start of the week, there are 30 units of X and 90 units of Y in stock.

The available processing time on machine A is 40 hours and on machine B it is 35
hours.

The demand for X in the week is 75 units and for Y it is 95 units.

Goal: Maximise the combined sum of units of X and Y in stock at the end of the
week.
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Maximise (x+30—75)+ (y+90 —95)



A linear program

Each unit of product X requires 50min processing time on machine A and 30min processing
time on machine B.

Each unit of product Y requires 24min of processing time on machine A and 33min of
processing time on machine B.

At the start of the week, there are 30 units of X and 90 units of Y in stock.
The available processing time on machine A is 40 hours and on machine B it is 35 hours.

The demand for X in the week is 75 units and for Y it is 95 units.

50x + 24y < 2400 x> 75— 30
30x + 33y < 2100 y > 95 — 90



A linear program

Maximise x+y-150

subjectto  50x + 24y < 2400
30x + 33y < 2100

x> 45
y >3




Linear programming (LP)

n

maximise E C;i
j=1

n
SU.bjeCt to Z g5 < bi, 1 = 1, ceey 1T0
Jj=1€e



Linear programming
(in matrix form)

maximise ¢l

subject to Ax <b,
r >0
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Do all LPs have feasible
solutions?

Maximise 5x+ 4y

subjectto x+y<?2
—2x—-2y< -9

x,y>0



Do all LPs have feasible
solutions?

Maximise 5x+ 4y

subject to _, { one contradicts the other!
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Terminology

Solution: An assignment of values to the variables.

Feasible solution: A solution that satisfies all of the
constraints.

Feasible region: The set of feasible solutions.

An LP that does not have any feasible solutions is called
infeasible.

Optimal solution: A feasible solution with the maximum
possible value for the objective function.



Solving the linear program

To find the optimal solution, it suffices to examine the
corners of the feasible region.

These are the intersection points of the lines defined by the
constraints.

e.g., 50x+24y - 2400 = x - 45



Solving the linear program

50x + 24y = 2400

30x + 33y = 2100

N
X=45 feasible region



Diet Example



Diet Example

Assume that we have two energy X and Y which provide calories, vitamin A
and vitamin C daily.



Diet Example

Assume that we have two energy X and Y which provide calories, vitamin A
and vitamin C daily.

We would like to drink x bottles of X and y bottles of Y, to ensure that our daily
intake is at least 300 calories, 36 units of vitamin A and 90 units of vitamin C.



Diet Example

Assume that we have two energy X and Y which provide calories, vitamin A
and vitamin C daily.

We would like to drink x bottles of X and y bottles of Y, to ensure that our daily
intake is at least 300 calories, 36 units of vitamin A and 90 units of vitamin C.

One bottle of X provides 60 calories, 12 units of vitamin A, and 10 units of
vitamin C.



Diet Example

Assume that we have two energy X and Y which provide calories, vitamin A
and vitamin C daily.

We would like to drink x bottles of X and y bottles of Y, to ensure that our daily
intake is at least 300 calories, 36 units of vitamin A and 90 units of vitamin C.

One bottle of X provides 60 calories, 12 units of vitamin A, and 10 units of
vitamin C.

One bottle of Y provides 60 calories, 6 units of vitamin A, and 30 units of
vitamin C.



Diet Example

Assume that we have two energy X and Y which provide calories, vitamin A
and vitamin C daily.

We would like to drink x bottles of X and y bottles of Y, to ensure that our daily
intake is at least 300 calories, 36 units of vitamin A and 90 units of vitamin C.

One bottle of X provides 60 calories, 12 units of vitamin A, and 10 units of
vitamin C.

One bottle of Y provides 60 calories, 6 units of vitamin A, and 30 units of
vitamin C.

One bottle of X costs £12, whereas one bottle of Y costs £15.



Diet Example

Assume that we have two energy X and Y which provide calories, vitamin A
and vitamin C daily.

We would like to drink x bottles of X and y bottles of Y, to ensure that our daily
intake is at least 300 calories, 36 units of vitamin A and 90 units of vitamin C.

One bottle of X provides 60 calories, 12 units of vitamin A, and 10 units of
vitamin C.

One bottle of Y provides 60 calories, 6 units of vitamin A, and 30 units of
vitamin C.

One bottle of X costs £12, whereas one bottle of Y costs £15.

How do we maintain our diet goals at the lowest possible cost?



Diet Example

Minimise  12x+ 15y

subjectto  60x + 60y > 300
12x + 6y > 36




Diet Example

Minimise  12x+ 15y

subjectto x+y>>5
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Solving the linear program

To find the optimal solution, it suffices to examine the
corners of the feasible region.

These are the intersection points of the lines defined by the
constraints.

X+y—5=x4+3y—-9=>y=2andy =73

12x + 15y = 66
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Solution: An assignment of values to the variables.
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Terminology

Solution: An assignment of values to the variables.

Feasible solution: A solution that satisfies all of the constraints.
Feasible region: The set of feasible solutions.

An LP that does not have any feasible solutions is called infeasible.

Optimal solution: A feasible solution with the maximum possible
value for the objective function

An LP is called unbounded if it has feasible solutions with arbitrarily
large objective values.
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Unbounded LPs

feasible region

If the LP is minimisation, /
it is not unbounded here.
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feasible region

polytope

hyperplane

@ candidate optimal solution
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To find the optimal solution, it suffices to examine the
corners of the feasible region.

What is the feasible region is empty, or the polytope is not
bounded?

We will consider valid solutions to say that
“the LP is infeasible” or “the LP is unbouded”.
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Solving the linear program

To find the optimal solution, it suffices to examine the
corners of the feasible region.

These are the intersection points of the lines defined by the
constraints.

This is what the Simplex method does, via pivoting
(next lecture)

Other algorithms for solving LPs:
Ellipsoid Method, Interior Point Methods
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A simple but inefficient
algorithm

Idea: Elimination of variables

Observation: Every inequality of the LP can be written in one of two forms

Xx; 2 aorx; < pfor some , f

“Solve” each inequality for X;.

Eliminate X; from all of the constraints.

Repeat for the next variable, until we only have one variable.

Substitute back to get the other variables.
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2
x<—-1+y o
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The above implies:




A simple but inefficient
algorithm (example)

X2-Yy
)CZI—Z
2
x<—-1+y e
X< 142y Simplifying:
The above implies: y>1/2
~lty2 -y %4/?/3
Syl Y=
2 y >0
l1+2y>—y
y
l+2y2>1—-=
Y 2
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A simple but inefficient
algorithm (example)

Simplifying:

y=>1/2
y > 4/3
y>—1/3
y=>0

Pick a feasible v,
e.g.,y = 2.

We can find a

feasible x using
our inequalities:
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A simple but inefficient
algorithm (example)

How do we find an optimal solution?

Observation: Given a linear objective function,
we can substitute it with a variable X, (how?)



Diet Example

Minimise  12x+ 15y

subjectto x+y>>5



Diet Example
Minimise  x,

subjectto x+y>>5

12x + 15y = x,
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A simple but inefficient
algorithm (example)

How do we find an optimal solution?

Observation: Given a linear objective function,
we can substitute it with a variable x;, (how?)

Eliminate to find inequalities for x;,.
Pick the X, that optimises the objective function.

Work out feasible x,, ..., x, for the rest of the
variables.
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A simple but inefficient
algorithm (example)

The algorithm is called Fourier-Motzkin Elimination (1826,
1936).

Similar idea to Gaussian Elimination.

Simple but highly inefficient: One elimination step over m
inequalities can result in Q(727) new inequalities.

Thus for k elimination steps we can have €2 <m2k>

constraints.



A nice consequence of FME

If the LP has an optimal feasible solution, then it has a
rational optimal feasible solution x* and the objective
function value f(x*) is also rational.
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Integer Linear programming

n

maximise E C;i
j=1

n
subject to Z i xi < b, 1=1,....,m
J=1¢

x; 1s Integer



Integer Linear programming

n

maximise E C;i
j=1

n
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Solving ILPs

The corners are not necessarily integer solutions.

It does not suffice to look at the corners.
We can exhaustively try all possible integer solutions.
Can we do something more clever?

Yes, but in the worst-case, it will still take exponential time
iIn many |LPs.

Generally speaking, ILP solving is NP-hard.
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Summarising

Linear Programs can be solved in polynomial time.
Ellipsoid method, interior point methods.

We will not learn how these work, this is for a course on
optimisation.

Not the Simplex Algorithm!

But we will learn about this algorithm in the next lecture, because
of its very important principles.

Integer Linear Programs generally cannot be solved in polynomial time
(unless P=NP).



