
Algorithms and Data
Structures

Introduction to Linear Programming

A problem

A problem
A company makes two products, X and Y, using two machines, A and B.

A problem
A company makes two products, X and Y, using two machines, A and B.

Each unit of product X requires 50min processing time on machine A and 30min
processing time on machine B.

A problem
A company makes two products, X and Y, using two machines, A and B.

Each unit of product X requires 50min processing time on machine A and 30min
processing time on machine B.

Each unit of product Y requires 24min of processing time on machine A and 33min
of processing time on machine B.

A problem
A company makes two products, X and Y, using two machines, A and B.

Each unit of product X requires 50min processing time on machine A and 30min
processing time on machine B.

Each unit of product Y requires 24min of processing time on machine A and 33min
of processing time on machine B.

At the start of the week, there are 30 units of X and 90 units of Y in stock.

A problem
A company makes two products, X and Y, using two machines, A and B.

Each unit of product X requires 50min processing time on machine A and 30min
processing time on machine B.

Each unit of product Y requires 24min of processing time on machine A and 33min
of processing time on machine B.

At the start of the week, there are 30 units of X and 90 units of Y in stock.

The available processing time on machine A is 40 hours and on machine B it is 35
hours.

A problem
A company makes two products, X and Y, using two machines, A and B.

Each unit of product X requires 50min processing time on machine A and 30min
processing time on machine B.

Each unit of product Y requires 24min of processing time on machine A and 33min
of processing time on machine B.

At the start of the week, there are 30 units of X and 90 units of Y in stock.

The available processing time on machine A is 40 hours and on machine B it is 35
hours.

The demand for X in the week is 75 units and for Y it is 95 units.

A problem
A company makes two products, X and Y, using two machines, A and B.

Each unit of product X requires 50min processing time on machine A and 30min
processing time on machine B.

Each unit of product Y requires 24min of processing time on machine A and 33min
of processing time on machine B.

At the start of the week, there are 30 units of X and 90 units of Y in stock.

The available processing time on machine A is 40 hours and on machine B it is 35
hours.

The demand for X in the week is 75 units and for Y it is 95 units.

Goal: Maximise the combined sum of units of X and Y in stock at the end of the
week.

A linear program
Goal: Maximise the combined sum of units of X and Y in
stock at the end of the week.

Maximise (x + 30 − 75) + (y + 90 − 95)

A linear program
Each unit of product X requires 50min processing time on machine A and 30min processing
time on machine B.

Each unit of product Y requires 24min of processing time on machine A and 33min of
processing time on machine B.

At the start of the week, there are 30 units of X and 90 units of Y in stock.

The available processing time on machine A is 40 hours and on machine B it is 35 hours.

The demand for X in the week is 75 units and for Y it is 95 units.

50x + 24y ≤ 2400
30x + 33y ≤ 2100

x ≥ 75 − 30

y ≥ 95 − 90

A linear program

50x + 24y ≤ 2400
30x + 33y ≤ 2100

x ≥ 45
y ≥ 5

Maximise x + y − 50

subject to

Linear programming (LP)

maximise
nX

j=1

cjxj

subject to
nX

j=12
↵ijxj  bi, i = 1, ...,m

xj � 0, j = 1, ..., n
<latexit sha1_base64="OJUrGAuepNCjFAKL935tA36jFgU=">AAAC1HicbVJNj9MwEHXC1xK+Chy5WFRUCFVR0j3ABWkFF467Eu2u1HSjiTNt3bWdbOxAq2AJhLjy47jxG/gTON3Cli4j2Xp6M2/GM+OsFFybKPrp+deu37h5a+92cOfuvfsPOg8fjXRRVwyHrBBFdZKBRsEVDg03Ak/KCkFmAo+zs7et//gDVpoX6r1ZlTiRMFN8yhkYR6WdX0mGM64aEHymwLywzb4NaI8mBpemkbDkkmu0LaNrmTaL17E9bZSlzGG7bC/nSi4lus4WyAw1haXJeQ35lpImXFF7qmgCopxD2vCFpX9yCDynWcr7LhOnPRfcD8OwT2WbfNd6vb+ymZNF/XUlp1xsKVWQoMovOwvSTjcKo7XRqyDegC7Z2GHa+ZHkBaslKsMEaD2Oo9JMGqgMZwJtkNQaS2BnMMOxgwok6kmzXoqlzxyT02lRuaMMXbPbigak1iuZuUgJZq53fS35P9+4NtNXk4arsjao2EWhaS3cxGm7YZrzyi1ArBwAVnH3VsrmUAEz7h+0Q4h3W74KRoMw3g8HR4PuwZvNOPbIE/KUPCcxeUkOyDtySIaEeUfeR++z98Uf+Z/8r/63i1Df22gek3/M//4bA2DW/A==</latexit>

Linear programming

(in matrix form)

maximise cTx

subject to Ax  b,

x � 0
<latexit sha1_base64="nOKMjrfexNM/5+dT0ca2VVHGD9E=">AAACenicbVHLbtNAFB27PIp5hbJESKNGmKciO61UlgU2LIvUtJXiEF2Pb9yhM2PXc10lsvwR/Bo7voQNC8ZJpELKkUY6OueM7sy5aamkpSj66flbt27fubt9L7j/4OGjx70nOye2qCuBI1GoojpLwaKSBkckSeFZWSHoVOFpevGp80+vsLKyMMe0KHGiITdyJgWQk6a970mKuTQNKJkboDdtM2wDHvKEcE6NhrnU0mLrFPG1WYnHbTvnSXKdsnX6DQVxKlqeXNaQhfzD3JkKL3n6rktuIgx5F8hdIAoSNNn1/GDa60eDaAl+k8Rr0mdrHE17P5KsELVGQ0KBteM4KmnSQEVSKGyDpLZYgriAHMeOGtBoJ82yupa/cErGZ0XljiG+VP++0YC2dqFTl9RA53bT68T/eeOaZu8njTRlTWjEatCsVq4k3u2BZ7JynamFIyAq6d7KxTlUIMhtqysh3vzyTXIyHMR7g+GXYf/w47qObfaM7bJXLGYH7JB9ZkdsxAT75T33Qu+l99vf9V/7b1dR31vfecr+gb//B85iuX8=</latexit>

Terminology

Terminology

Solution: An assignment of values to the variables.

Terminology

Solution: An assignment of values to the variables.

Feasible solution: A solution that satisfies all of the
constraints.

Terminology

Solution: An assignment of values to the variables.

Feasible solution: A solution that satisfies all of the
constraints.

Feasible region: The set of feasible solutions.

Geometric Interpretation

Geometric Interpretation

30x + 33y = 2100

Geometric Interpretation

30x + 33y = 2100

50x + 24y = 2400

Geometric Interpretation

30x + 33y = 2100

50x + 24y = 2400

y = 5

Geometric Interpretation

30x + 33y = 2100

50x + 24y = 2400

y = 5

x=45

Geometric Interpretation

30x + 33y = 2100

50x + 24y = 2400

y = 5

x=45 feasible region

Geometric Interpretation

30x + 33y = 2100

50x + 24y = 2400

y = 5

x=45 feasible region

Do all LPs have feasible
solutions?

x + y ≤ 2
−2x − 2y ≤ − 9
x, y ≥ 0

Maximise 5x + 4y

subject to

Do all LPs have feasible
solutions?

x + y ≤ 2
−2x − 2y ≤ − 9
x, y ≥ 0

Maximise 5x + 4y

subject to one contradicts the other!

Terminology
Solution: An assignment of values to the variables.

Feasible solution: A solution that satisfies all of the
constraints.

Feasible region: The set of feasible solutions.

Terminology
Solution: An assignment of values to the variables.

Feasible solution: A solution that satisfies all of the
constraints.

Feasible region: The set of feasible solutions.

An LP that does not have any feasible solutions is called
infeasible.

Terminology
Solution: An assignment of values to the variables.

Feasible solution: A solution that satisfies all of the
constraints.

Feasible region: The set of feasible solutions.

An LP that does not have any feasible solutions is called
infeasible.

Optimal solution: A feasible solution with the maximum
possible value for the objective function.

Solving the linear program

To find the optimal solution, it suffices to examine the
corners of the feasible region.

These are the intersection points of the lines defined by the
constraints.

e.g., 50x+24y - 2400 = x - 45

Solving the linear program

30x + 33y = 2100

50x + 24y = 2400

y = 5

x=45 feasible region

Diet Example

Diet Example
Assume that we have two energy and which provide calories, vitamin A
and vitamin C daily.

X Y

Diet Example
Assume that we have two energy and which provide calories, vitamin A
and vitamin C daily.

X Y

We would like to drink bottles of and bottles of , to ensure that our daily
intake is at least 300 calories, 36 units of vitamin A and 90 units of vitamin C.

x X y Y

Diet Example
Assume that we have two energy and which provide calories, vitamin A
and vitamin C daily.

X Y

We would like to drink bottles of and bottles of , to ensure that our daily
intake is at least 300 calories, 36 units of vitamin A and 90 units of vitamin C.

x X y Y

One bottle of provides 60 calories, 12 units of vitamin A, and 10 units of
vitamin C.

X

Diet Example
Assume that we have two energy and which provide calories, vitamin A
and vitamin C daily.

X Y

We would like to drink bottles of and bottles of , to ensure that our daily
intake is at least 300 calories, 36 units of vitamin A and 90 units of vitamin C.

x X y Y

One bottle of provides 60 calories, 12 units of vitamin A, and 10 units of
vitamin C.

X

One bottle of provides 60 calories, 6 units of vitamin A, and 30 units of
vitamin C.

Y

Diet Example
Assume that we have two energy and which provide calories, vitamin A
and vitamin C daily.

X Y

We would like to drink bottles of and bottles of , to ensure that our daily
intake is at least 300 calories, 36 units of vitamin A and 90 units of vitamin C.

x X y Y

One bottle of provides 60 calories, 12 units of vitamin A, and 10 units of
vitamin C.

X

One bottle of provides 60 calories, 6 units of vitamin A, and 30 units of
vitamin C.

Y

One bottle of costs £12, whereas one bottle of costs £15.X Y

Diet Example
Assume that we have two energy and which provide calories, vitamin A
and vitamin C daily.

X Y

We would like to drink bottles of and bottles of , to ensure that our daily
intake is at least 300 calories, 36 units of vitamin A and 90 units of vitamin C.

x X y Y

One bottle of provides 60 calories, 12 units of vitamin A, and 10 units of
vitamin C.

X

One bottle of provides 60 calories, 6 units of vitamin A, and 30 units of
vitamin C.

Y

One bottle of costs £12, whereas one bottle of costs £15.X Y

How do we maintain our diet goals at the lowest possible cost?

Diet Example
Minimise 12x + 15y

60x + 60y ≥ 300
12x + 6y ≥ 36
10x + 30y ≥ 90
x, y ≥ 0

subject to

Diet Example
Minimise 12x + 15y

x + y ≥ 5
2x + y ≥ 6
x + 3y ≥ 9
x, y ≥ 0

subject to

Solving the linear program

To find the optimal solution, it suffices to examine the
corners of the feasible region.

These are the intersection points of the lines defined by the
constraints.

Solving the linear program

To find the optimal solution, it suffices to examine the
corners of the feasible region.

These are the intersection points of the lines defined by the
constraints.

x + y − 5 = 2x + y − 6 ⇒ x = 1 and y = 4

Solving the linear program

To find the optimal solution, it suffices to examine the
corners of the feasible region.

These are the intersection points of the lines defined by the
constraints.

x + y − 5 = 2x + y − 6 ⇒ x = 1 and y = 4

12x + 15y = 72

Solving the linear program

To find the optimal solution, it suffices to examine the
corners of the feasible region.

These are the intersection points of the lines defined by the
constraints.

Solving the linear program

To find the optimal solution, it suffices to examine the
corners of the feasible region.

These are the intersection points of the lines defined by the
constraints.

x + y − 5 = x + 3y − 9 ⇒ y = 2 and y = 3

Solving the linear program

To find the optimal solution, it suffices to examine the
corners of the feasible region.

These are the intersection points of the lines defined by the
constraints.

x + y − 5 = x + 3y − 9 ⇒ y = 2 and y = 3

12x + 15y = 66

Geometric Interpretation

Geometric Interpretation

Geometric Interpretation

Geometric Interpretation

feasible region

Geometric Interpretation

feasible region

Terminology
Solution: An assignment of values to the variables.

Feasible solution: A solution that satisfies all of the
constraints.

Feasible region: The set of feasible solutions.

An LP that does not have any feasible solutions is called
infeasible.

Optimal solution: A feasible solution with the maximum
possible value for the objective function

Terminology
Solution: An assignment of values to the variables.

Feasible solution: A solution that satisfies all of the constraints.

Feasible region: The set of feasible solutions.

An LP that does not have any feasible solutions is called infeasible.

Optimal solution: A feasible solution with the maximum possible
value for the objective function

An LP is called unbounded if it has feasible solutions with arbitrarily
large objective values.

Unbounded LPs

feasible region

Unbounded LPs

feasible region

If the LP is minimisation, 
it is not unbounded here.

More terminology

More terminology

More terminology

More terminology

More terminology

More terminology

More terminology

feasible region

More terminology

feasible region

hyperplane

More terminology

feasible region

hyperplane

polytope

More terminology

feasible region

hyperplane

polytope

More terminology

feasible region

hyperplane

polytope

More terminology

feasible region

hyperplane

polytope

More terminology

feasible region

hyperplane

polytope

More terminology

feasible region

hyperplane

polytope

candidate optimal solution

Solving the linear program

To find the optimal solution, it suffices to examine the
corners of the feasible region.

Solving the linear program

To find the optimal solution, it suffices to examine the
corners of the feasible region.

What is the feasible region is empty, or the polytope is not
bounded?

Solving the linear program

To find the optimal solution, it suffices to examine the
corners of the feasible region.

What is the feasible region is empty, or the polytope is not
bounded?

We will consider valid solutions to say that  
“the LP is infeasible” or “the LP is unbouded”.

Solving the linear program

To find the optimal solution, it suffices to examine the
corners of the feasible region.

These are the intersection points of the lines defined by the
constraints.

Solving the linear program

To find the optimal solution, it suffices to examine the
corners of the feasible region.

These are the intersection points of the lines defined by the
constraints.

This is what the Simplex method does, via pivoting  
(next lecture)

Solving the linear program

To find the optimal solution, it suffices to examine the
corners of the feasible region.

These are the intersection points of the lines defined by the
constraints.

This is what the Simplex method does, via pivoting  
(next lecture)

Other algorithms for solving LPs:  
Ellipsoid Method, Interior Point Methods

A simple but inefficient
algorithm

A simple but inefficient
algorithm

Idea: Elimination of variables

A simple but inefficient
algorithm

Idea: Elimination of variables

Observation: Every inequality of the LP can be written in one of two forms

A simple but inefficient
algorithm

Idea: Elimination of variables

Observation: Every inequality of the LP can be written in one of two forms

 or for some xj ≥ α xj ≤ β α, β

A simple but inefficient
algorithm

Idea: Elimination of variables

Observation: Every inequality of the LP can be written in one of two forms

 or for some xj ≥ α xj ≤ β α, β

“Solve” each inequality for .xj

A simple but inefficient
algorithm

Idea: Elimination of variables

Observation: Every inequality of the LP can be written in one of two forms

 or for some xj ≥ α xj ≤ β α, β

“Solve” each inequality for .xj

Eliminate from all of the constraints.xj

A simple but inefficient
algorithm

Idea: Elimination of variables

Observation: Every inequality of the LP can be written in one of two forms

 or for some xj ≥ α xj ≤ β α, β

“Solve” each inequality for .xj

Eliminate from all of the constraints.xj

Repeat for the next variable, until we only have one variable.

A simple but inefficient
algorithm

Idea: Elimination of variables

Observation: Every inequality of the LP can be written in one of two forms

 or for some xj ≥ α xj ≤ β α, β

“Solve” each inequality for .xj

Eliminate from all of the constraints.xj

Repeat for the next variable, until we only have one variable.

Substitute back to get the other variables.

A simple but inefficient
algorithm (example)

A simple but inefficient
algorithm (example)
 
 
 

x + y ≥ 0
2x + y ≥ 2
−x + y ≥ 1
−x + 2y ≥ − 1

A simple but inefficient
algorithm (example)
 
 
 

x + y ≥ 0
2x + y ≥ 2
−x + y ≥ 1
−x + 2y ≥ − 1

“Solve” for :x

A simple but inefficient
algorithm (example)
 
 
 

x + y ≥ 0
2x + y ≥ 2
−x + y ≥ 1
−x + 2y ≥ − 1

“Solve” for :x

 
 

 

x ≥ − y
x ≥ 1 −

y
2

x ≤ − 1 + y
x ≤ 1 + 2y

A simple but inefficient
algorithm (example)

 
 

 

x ≥ − y
x ≥ 1 −

y
2

x ≤ − 1 + y
x ≤ 1 + 2y

A simple but inefficient
algorithm (example)

 
 

 

x ≥ − y
x ≥ 1 −

y
2

x ≤ − 1 + y
x ≤ 1 + 2y

The above implies:

A simple but inefficient
algorithm (example)

 
 

 

x ≥ − y
x ≥ 1 −

y
2

x ≤ − 1 + y
x ≤ 1 + 2y

The above implies:

 
 

 

−1 + y ≥ − y
−1 + y ≥ 1 −

y
2

1 + 2y ≥ − y
1 + 2y ≥ 1 −

y
2

A simple but inefficient
algorithm (example)

 
 

 

x ≥ − y
x ≥ 1 −

y
2

x ≤ − 1 + y
x ≤ 1 + 2y

The above implies:

 
 

 

−1 + y ≥ − y
−1 + y ≥ 1 −

y
2

1 + 2y ≥ − y
1 + 2y ≥ 1 −

y
2

Simplifying:

A simple but inefficient
algorithm (example)

 
 

 

x ≥ − y
x ≥ 1 −

y
2

x ≤ − 1 + y
x ≤ 1 + 2y

The above implies:

 
 

 

−1 + y ≥ − y
−1 + y ≥ 1 −

y
2

1 + 2y ≥ − y
1 + 2y ≥ 1 −

y
2

Simplifying:

 
 

 

y ≥ 1/2
y ≥ 4/3
y ≥ − 1/3
y ≥ 0

A simple but inefficient
algorithm (example)

Simplifying:

 
 

 

y ≥ 1/2
y ≥ 4/3
y ≥ − 1/3
y ≥ 0

A simple but inefficient
algorithm (example)

Simplifying:

 
 

 

y ≥ 1/2
y ≥ 4/3
y ≥ − 1/3
y ≥ 0

Pick a feasible ,
e.g., .

y
y = 2

A simple but inefficient
algorithm (example)

Simplifying:

 
 

 

y ≥ 1/2
y ≥ 4/3
y ≥ − 1/3
y ≥ 0

Pick a feasible ,
e.g., .

y
y = 2

We can find a
feasible using
our inequalities: 
 

 
 

 

x

x ≥ − y
x ≥ 1 −

y
2

x ≤ − 1 + y
x ≤ 1 + 2y

A simple but inefficient
algorithm (example)

A simple but inefficient
algorithm (example)

How do we find an optimal solution?

A simple but inefficient
algorithm (example)

How do we find an optimal solution?

Observation: Given a linear objective function,
we can substitute it with a variable (how?)x0

Diet Example
Minimise 12x + 15y

x + y ≥ 5
2x + y ≥ 6
x + 3y ≥ 9
x, y ≥ 0

subject to

Diet Example
Minimise x0

x + y ≥ 5
2x + y ≥ 6
x + 3y ≥ 9
x, y ≥ 0

subject to

12x + 15y = x0

A simple but inefficient
algorithm (example)

How do we find an optimal solution?

Observation: Given a linear objective function,
we can substitute it with a variable (how?)x0

A simple but inefficient
algorithm (example)

How do we find an optimal solution?

Observation: Given a linear objective function,
we can substitute it with a variable (how?)x0

Eliminate to find inequalities for .x0

A simple but inefficient
algorithm (example)

How do we find an optimal solution?

Observation: Given a linear objective function,
we can substitute it with a variable (how?)x0

Eliminate to find inequalities for .x0

Pick the that optimises the objective function.x0

A simple but inefficient
algorithm (example)

How do we find an optimal solution?

Observation: Given a linear objective function,
we can substitute it with a variable (how?)x0

Eliminate to find inequalities for .x0

Pick the that optimises the objective function.x0

Work out feasible for the rest of the
variables.

x1, …, xn

A simple but inefficient
algorithm (example)

A simple but inefficient
algorithm (example)

The algorithm is called Fourier-Motzkin Elimination (1826,
1936).

A simple but inefficient
algorithm (example)

The algorithm is called Fourier-Motzkin Elimination (1826,
1936).

Similar idea to Gaussian Elimination.

A simple but inefficient
algorithm (example)

The algorithm is called Fourier-Motzkin Elimination (1826,
1936).

Similar idea to Gaussian Elimination.

Simple but highly inefficient: One elimination step over
inequalities can result in new inequalities.

m
Ω(n2)

A simple but inefficient
algorithm (example)

The algorithm is called Fourier-Motzkin Elimination (1826,
1936).

Similar idea to Gaussian Elimination.

Simple but highly inefficient: One elimination step over
inequalities can result in new inequalities.

m
Ω(n2)

Thus for elimination steps we can have

constraints.

k Ω (m2k)

A nice consequence of FME

If the LP has an optimal feasible solution, then it has a
rational optimal feasible solution and the objective
function value is also rational.

x*
f(x*)

Linear programming (LP)

maximise
nX

j=1

cjxj

subject to
nX

j=12
↵ijxj  bi, i = 1, ...,m

xj � 0, j = 1, ..., n
<latexit sha1_base64="OJUrGAuepNCjFAKL935tA36jFgU=">AAAC1HicbVJNj9MwEHXC1xK+Chy5WFRUCFVR0j3ABWkFF467Eu2u1HSjiTNt3bWdbOxAq2AJhLjy47jxG/gTON3Cli4j2Xp6M2/GM+OsFFybKPrp+deu37h5a+92cOfuvfsPOg8fjXRRVwyHrBBFdZKBRsEVDg03Ak/KCkFmAo+zs7et//gDVpoX6r1ZlTiRMFN8yhkYR6WdX0mGM64aEHymwLywzb4NaI8mBpemkbDkkmu0LaNrmTaL17E9bZSlzGG7bC/nSi4lus4WyAw1haXJeQ35lpImXFF7qmgCopxD2vCFpX9yCDynWcr7LhOnPRfcD8OwT2WbfNd6vb+ymZNF/XUlp1xsKVWQoMovOwvSTjcKo7XRqyDegC7Z2GHa+ZHkBaslKsMEaD2Oo9JMGqgMZwJtkNQaS2BnMMOxgwok6kmzXoqlzxyT02lRuaMMXbPbigak1iuZuUgJZq53fS35P9+4NtNXk4arsjao2EWhaS3cxGm7YZrzyi1ArBwAVnH3VsrmUAEz7h+0Q4h3W74KRoMw3g8HR4PuwZvNOPbIE/KUPCcxeUkOyDtySIaEeUfeR++z98Uf+Z/8r/63i1Df22gek3/M//4bA2DW/A==</latexit>

Integer Linear programming

maximise
nX

j=1

cjxj

subject to
nX

j=12
↵ijxj  bi, i = 1, ...,m

xj � 0, j = 1, ..., n
<latexit sha1_base64="OJUrGAuepNCjFAKL935tA36jFgU=">AAAC1HicbVJNj9MwEHXC1xK+Chy5WFRUCFVR0j3ABWkFF467Eu2u1HSjiTNt3bWdbOxAq2AJhLjy47jxG/gTON3Cli4j2Xp6M2/GM+OsFFybKPrp+deu37h5a+92cOfuvfsPOg8fjXRRVwyHrBBFdZKBRsEVDg03Ak/KCkFmAo+zs7et//gDVpoX6r1ZlTiRMFN8yhkYR6WdX0mGM64aEHymwLywzb4NaI8mBpemkbDkkmu0LaNrmTaL17E9bZSlzGG7bC/nSi4lus4WyAw1haXJeQ35lpImXFF7qmgCopxD2vCFpX9yCDynWcr7LhOnPRfcD8OwT2WbfNd6vb+ymZNF/XUlp1xsKVWQoMovOwvSTjcKo7XRqyDegC7Z2GHa+ZHkBaslKsMEaD2Oo9JMGqgMZwJtkNQaS2BnMMOxgwok6kmzXoqlzxyT02lRuaMMXbPbigak1iuZuUgJZq53fS35P9+4NtNXk4arsjao2EWhaS3cxGm7YZrzyi1ArBwAVnH3VsrmUAEz7h+0Q4h3W74KRoMw3g8HR4PuwZvNOPbIE/KUPCcxeUkOyDtySIaEeUfeR++z98Uf+Z/8r/63i1Df22gek3/M//4bA2DW/A==</latexit>

xj is integer
<latexit sha1_base64="2pKF5IOoZ9BLAsFdpxgD/Em8u80=">AAACAHicbVA9TwJBEN3DL8Qv1MLCZiMxsSJ3aKIl0cYSE/lIgJC9ZYCVvb3L7pyBXGj8KzYWGmPrz7Dz37jAFQq+ZJKX92YyM8+PpDDout9OZmV1bX0ju5nb2t7Z3cvvH9RMGGsOVR7KUDd8ZkAKBVUUKKERaWCBL6HuD2+mfv0RtBGhusdxBO2A9ZXoCc7QSp380ajzQFsII0yoMFQohD5oOunkC27RnYEuEy8lBZKi0sl/tbohjwNQyCUzpum5EbYTplFwCZNcKzYQMT5kfWhaqlgApp3MHpjQU6t0aS/UthTSmfp7ImGBMePAt50Bw4FZ9Kbif14zxt5VOxEqihEUny/qxZJiSKdp0K7QwFGOLWFcC3sr5QOmGUebWc6G4C2+vExqpaJ3XizdXRTK12kcWXJMTsgZ8cglKZNbUiFVwsmEPJNX8uY8OS/Ou/Mxb8046cwh+QPn8wdQkpY5</latexit>

Integer Linear programming

maximise
nX

j=1

cjxj

subject to
nX

j=12
↵ijxj  bi, i = 1, ...,m

xj � 0, j = 1, ..., n
<latexit sha1_base64="OJUrGAuepNCjFAKL935tA36jFgU=">AAAC1HicbVJNj9MwEHXC1xK+Chy5WFRUCFVR0j3ABWkFF467Eu2u1HSjiTNt3bWdbOxAq2AJhLjy47jxG/gTON3Cli4j2Xp6M2/GM+OsFFybKPrp+deu37h5a+92cOfuvfsPOg8fjXRRVwyHrBBFdZKBRsEVDg03Ak/KCkFmAo+zs7et//gDVpoX6r1ZlTiRMFN8yhkYR6WdX0mGM64aEHymwLywzb4NaI8mBpemkbDkkmu0LaNrmTaL17E9bZSlzGG7bC/nSi4lus4WyAw1haXJeQ35lpImXFF7qmgCopxD2vCFpX9yCDynWcr7LhOnPRfcD8OwT2WbfNd6vb+ymZNF/XUlp1xsKVWQoMovOwvSTjcKo7XRqyDegC7Z2GHa+ZHkBaslKsMEaD2Oo9JMGqgMZwJtkNQaS2BnMMOxgwok6kmzXoqlzxyT02lRuaMMXbPbigak1iuZuUgJZq53fS35P9+4NtNXk4arsjao2EWhaS3cxGm7YZrzyi1ArBwAVnH3VsrmUAEz7h+0Q4h3W74KRoMw3g8HR4PuwZvNOPbIE/KUPCcxeUkOyDtySIaEeUfeR++z98Uf+Z/8r/63i1Df22gek3/M//4bA2DW/A==</latexit>

xj is integer
<latexit sha1_base64="2pKF5IOoZ9BLAsFdpxgD/Em8u80=">AAACAHicbVA9TwJBEN3DL8Qv1MLCZiMxsSJ3aKIl0cYSE/lIgJC9ZYCVvb3L7pyBXGj8KzYWGmPrz7Dz37jAFQq+ZJKX92YyM8+PpDDout9OZmV1bX0ju5nb2t7Z3cvvH9RMGGsOVR7KUDd8ZkAKBVUUKKERaWCBL6HuD2+mfv0RtBGhusdxBO2A9ZXoCc7QSp380ajzQFsII0yoMFQohD5oOunkC27RnYEuEy8lBZKi0sl/tbohjwNQyCUzpum5EbYTplFwCZNcKzYQMT5kfWhaqlgApp3MHpjQU6t0aS/UthTSmfp7ImGBMePAt50Bw4FZ9Kbif14zxt5VOxEqihEUny/qxZJiSKdp0K7QwFGOLWFcC3sr5QOmGUebWc6G4C2+vExqpaJ3XizdXRTK12kcWXJMTsgZ8cglKZNbUiFVwsmEPJNX8uY8OS/Ou/Mxb8046cwh+QPn8wdQkpY5</latexit>

Feasible region

feasible region

hyperplane

polytope

candidate optimal solutioncandidate optimal solution

Feasible region

feasible region

hyperplane

polytope

Feasible region

feasible region

hyperplane

polytope

Feasible region

feasible region

hyperplane

polytope

Feasible region

feasible region

hyperplane

polytope

Feasible region

feasible region

hyperplane

polytope

Feasible region

feasible region

hyperplane

polytope

Feasible region

feasible region

hyperplane

polytope

Feasible region

feasible region

hyperplane

polytope

candidate optimal solution

Solving ILPs

Solving ILPs
The corners are not necessarily integer solutions.

Solving ILPs
The corners are not necessarily integer solutions.

It does not suffice to look at the corners.

Solving ILPs
The corners are not necessarily integer solutions.

It does not suffice to look at the corners.

We can exhaustively try all possible integer solutions.

Solving ILPs
The corners are not necessarily integer solutions.

It does not suffice to look at the corners.

We can exhaustively try all possible integer solutions.

Can we do something more clever?

Solving ILPs
The corners are not necessarily integer solutions.

It does not suffice to look at the corners.

We can exhaustively try all possible integer solutions.

Can we do something more clever?

Yes, but in the worst-case, it will still take exponential time
in many ILPs.

Solving ILPs
The corners are not necessarily integer solutions.

It does not suffice to look at the corners.

We can exhaustively try all possible integer solutions.

Can we do something more clever?

Yes, but in the worst-case, it will still take exponential time
in many ILPs.

Generally speaking, ILP solving is NP-hard.

Summarising

Summarising
Linear Programs can be solved in polynomial time.

Summarising
Linear Programs can be solved in polynomial time.

Ellipsoid method, interior point methods.

Summarising
Linear Programs can be solved in polynomial time.

Ellipsoid method, interior point methods.

We will not learn how these work, this is for a course on
optimisation.

Summarising
Linear Programs can be solved in polynomial time.

Ellipsoid method, interior point methods.

We will not learn how these work, this is for a course on
optimisation.

Not the Simplex Algorithm!

Summarising
Linear Programs can be solved in polynomial time.

Ellipsoid method, interior point methods.

We will not learn how these work, this is for a course on
optimisation.

Not the Simplex Algorithm!

But we will learn about this algorithm in the next lecture, because
of its very important principles.

Summarising
Linear Programs can be solved in polynomial time.

Ellipsoid method, interior point methods.

We will not learn how these work, this is for a course on
optimisation.

Not the Simplex Algorithm!

But we will learn about this algorithm in the next lecture, because
of its very important principles.

Integer Linear Programs generally cannot be solved in polynomial time
(unless P=NP).

