

Algorithms and Data Structures

The Simplex Method

Linear Programs in Standard Form

maximise
$$\sum_{j=1}^{n} c_j x_j$$
 subject to
$$\sum_{j=1}^{n} \alpha_{ij} x_j \leq b_i, \quad i=1,...,m$$

$$x_j \geq 0, \quad j=1,...,n$$

Linear Programs in Standard Form

maximise
$$\sum_{j=1}^{n} c_j x_j$$
 subject to
$$\sum_{j=1}^{n} \alpha_{ij} x_j \leq b_i, \quad i=1,...,m$$

$$x_j \geq 0, \quad j=1,...,n$$

Linear Programs in Standard Form

maximise
$$\sum_{j=1}^{n} c_j x_j$$
 subject to
$$\sum_{j=1}^{n} \alpha_{ij} x_j \leq b_i, \quad i=1,...,m$$

$$x_j \geq 0, \quad j=1,...,n$$

Given a Linear Program (LP) in standard form:

Given a Linear Program (LP) in standard form:

Return an optimal solution (i.e., a feasible solution that maximises the objective function), or

Given a Linear Program (LP) in standard form:

Return an optimal solution (i.e., a feasible solution that maximises the objective function), or

Return that the LP is infeasible, or

Given a Linear Program (LP) in standard form:

Return an optimal solution (i.e., a feasible solution that maximises the objective function), or

Return that the LP is infeasible, or

Return that the LP is unbounded.

It does not run in polynomial time.

It does *not* run in polynomial time.

There are other algorithms for LP that do (e.g., the ellipsoid method, interior point methods)

It does *not* run in polynomial time.

There are other algorithms for LP that do (e.g., the ellipsoid method, interior point methods)

Then why study it? 😲

It does not run in polynomial time.

There are other algorithms for LP that do (e.g., the ellipsoid method, interior point methods)

Then why study it? 😲

It provides very useful insights into linear programming.

It does not run in polynomial time.

There are other algorithms for LP that do (e.g., the ellipsoid method, interior point methods)

Then why study it? (9)

It provides very useful insights into linear programming.

It runs quite fast in practice.

It does *not* run in polynomi

There are other algorithms (e.g., the ellipsoid method, **Smoothed Analysis of Algorithms: Why the Simplex Algorithm Usually Takes Polynomial Time**

DANIEL A. SPIELMAN

Massachusetts Institute of Technology, Boston, Massachusetts

AND

SHANG-HUA TENG

Boston University, Boston, Massachusetts, and Akamai Technologies, Inc.

Then why study it? (9)

It provides very useful insights into linear programming.

It runs quite fast in practice.

It does not run in polynomi

There are other algorithms (e.g., the ellipsoid method,

Smoothed Analysis of Algorithms: Why the Simplex Algorithm Usually Takes Polynomial Time

DANIEL A. SPIELMAN

Massachusetts Institute of Technology, Boston, Massachusetts

AND

SHANG-HUA TENG

Boston University, Boston, Massachusetts, and Akamai Technologies, Inc.

Then why study it? 🤥

It runs quite fast in practice.

Polynomial time is still not out of the question.

The Simplex Method (explained via example)

Maximise
$$5x_1 + 4x_2 + 3x_3$$

subject to
$$2x_1 + 3x_2 + x_3 \le 5$$

 $4x_1 + x_2 + 2x + 3 \le 11$
 $3x_1 + 4x_2 + 2x_3 \le 8$
 $x_1, x_2, x_3 \ge 0$

For each constraint we introduce a slack variable:

For each constraint we introduce a slack variable:

e.g., for the constraint $2x_1 + 3x_2 + x_3 \le 5$, we introduce variable w_1 and we write

$$w_1 = 5 - 2x_1 - 3x_2 - x_3$$

Maximise
$$5x_1 + 4x_2 + 3x_3$$

subject to
$$2x_1 + 3x_2 + x_3 \le 5$$

 $4x_1 + x_2 + 2x + 3 \le 11$
 $3x_1 + 4x_2 + 2x_3 \le 8$
 $x_1, x_2, x_3 \ge 0$

Maximise
$$5x_1 + 4x_2 + 3x_3$$

subject to
$$w_1 = 5 - 2x_1 + 3x_2 + x_3$$

 $w_2 = 11 - 4x_1 + x_2 + 2x + 3$
 $w_3 = 8 - 3x_1 + 4x_2 + 2x_3$
 $x_1, x_2, x_3 \ge 0$

Maximise
$$5x_1 + 4x_2 + 3x_3$$

subject to
$$w_1 = 5 - 2x_1 + 3x_2 + x_3$$

 $w_2 = 11 - 4x_1 + x_2 + 2x + 3$
 $w_3 = 8 - 3x_1 + 4x_2 + 2x_3$
 $x_1, x_2, x_3 \ge 0$

Is this equivalent to the original LP?

Maximise
$$5x_1 + 4x_2 + 3x_3$$

subject to
$$w_1 = 5 - 2x_1 + 3x_2 + x_3$$

 $w_2 = 11 - 4x_1 + x_2 + 2x + 3$
 $w_3 = 8 - 3x_1 + 4x_2 + 2x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

For each constraint we introduce a slack variable:

e.g., for the constraint $2x_1 + 3x_2 + x_3 \le 5$, we introduce variable w_1 and we write

$$w_1 = 5 - 2x_1 - 3x_2 - x_3$$

For each constraint we introduce a slack variable:

e.g., for the constraint $2x_1 + 3x_2 + x_3 \le 5$, we introduce variable w_1 and we write

$$w_1 = 5 - 2x_1 - 3x_2 - x_3$$

We also introduce a slack variable ζ for the objective function.

Maximise
$$\zeta = 5x_1 + 4x_2 + 3x_3$$

subject to
$$w_1 = 5 - 2x_1 + 3x_2 + x_3$$

 $w_2 = 11 - 4x_1 + x_2 + 2x + 3$
 $w_3 = 8 - 3x_1 + 4x_2 + 2x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

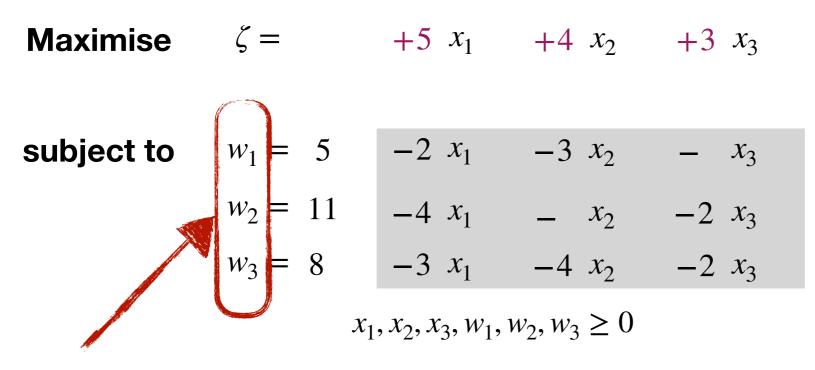
Dictionaries

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to
$$w_1 = 5$$
 $-2 x_1 -3 x_2 -x_3$ $w_2 = 11 -4 x_1 -x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

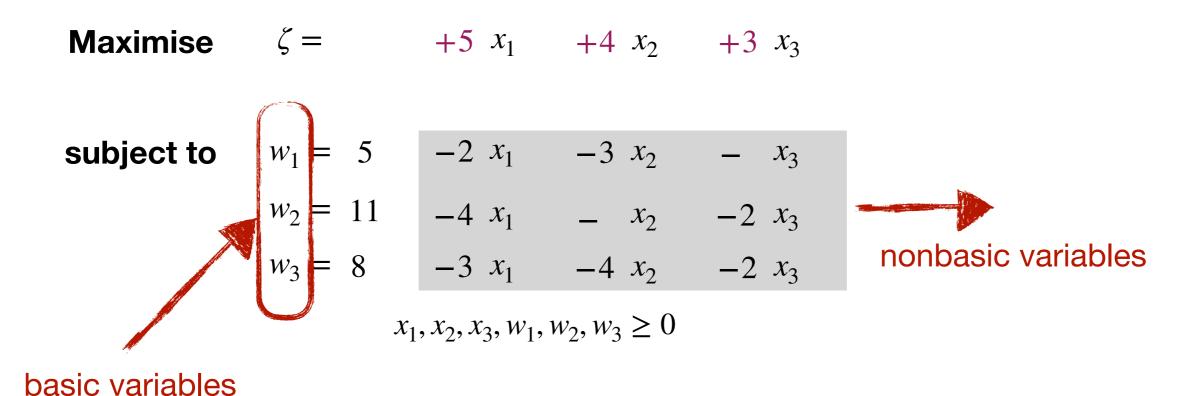
$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

Dictionaries



basic variables

Dictionaries



Maximise
$$5x_1 + 4x_2 + 3x_3$$

subject to
$$w_1 = 5 - 2x_1 + 3x_2 + x_3$$

 $w_2 = 11 - 4x_1 + x_2 + 2x + 3$
 $w_3 = 8 - 3x_1 + 4x_2 + 2x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

Improve this solution to some $\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{w}_1, \bar{w}_2, \bar{w}_3$ such that $5\bar{x}_1 + 4\bar{x}_2 + 3\bar{x}_3 > 5x_1 + 4x_2 + 3x_3$

Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

Improve this solution to some $\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{w}_1, \bar{w}_2, \bar{w}_3$ such that $5\bar{x}_1 + 4\bar{x}_2 + 3\bar{x}_3 > 5x_1 + 4x_2 + 3x_3$

Continue until no further improvement is possible (in that case we are at an optimal solution).

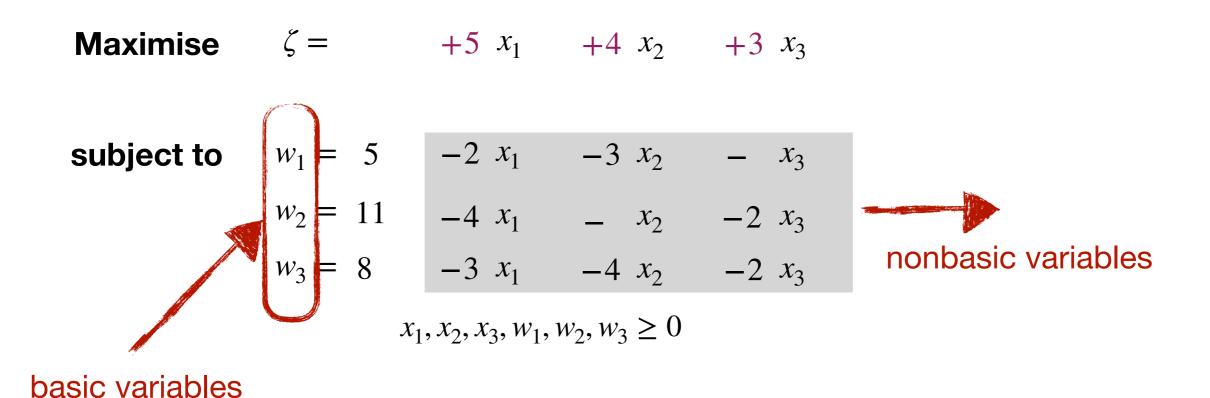
The Simplex Method (strategy)

Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

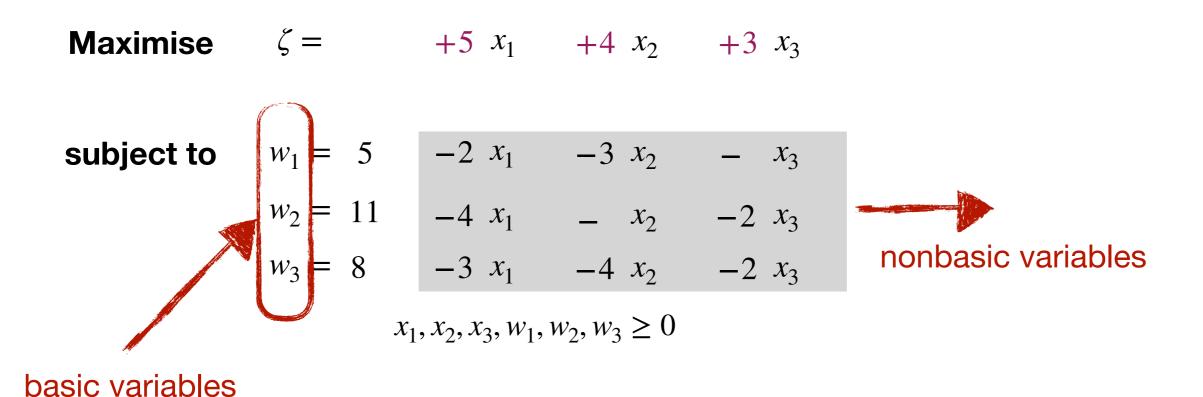
Improve this solution to some $\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{w}_1, \bar{w}_2, \bar{w}_3$ such that $5\bar{x}_1 + 4\bar{x}_2 + 3\bar{x}_3 > 5x_1 + 4x_2 + 3x_3$

Continue until no further improvement is possible (in that case we are at an optimal solution).

Does this remind you of something?



Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

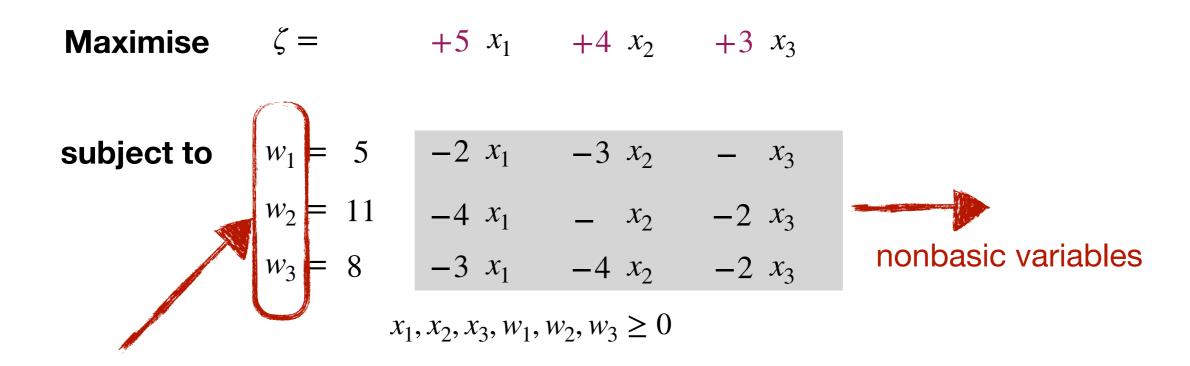


Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

Suggestions?

$$x_1 = x_2 = x_3 = 0$$

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$



A solution obtained by setting all the nonbasic variables to 0 is called a basic feasible solution.

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$

$$w_1 = 5$$
 $-2 x_1$ $-3 x_2$ $- x_3$
 $w_2 = 11$ $-4 x_1$ $- x_2$ $-2 x_3$
 $w_3 = 8$ $-3 x_1$ $-4 x_2$ $-2 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$

$$w_2 = 11$$
 $-4 x_1$ $- x_2$ $-2 x_3$ $w_3 = 8$ $-3 x_1$ $-4 x_2$ $-2 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

We can increase the value of some nonbasic variable, e.g., x_1

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to
$$w_1 = 5$$
 $-2 x_1 -3 x_2 -x_3$ $w_2 = 11 -4 x_1 -x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

We can increase the value of some nonbasic variable, e.g., x_1

We should not violate any constraints though!

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$

$$w_2 = 11$$
 $-4 x_1 - x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

We can increase the value of some nonbasic variable, e.g., x_1

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to $w_1 = 5$ $-2 x_1 -3 x_2 -x_3$ $w_2 = 11 -4 x_1 -x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

For w_1 , x_1 can become as large as 5/2 = 30/12.

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

For w_1 , x_1 can become as large as 5/2 = 30/12.

For w_2 , x_1 can become as large as 11/4 = 33/12.

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

For w_1 , x_1 can become as large as 5/2 = 30/12.

For w_2 , x_1 can become as large as 11/4 = 33/12.

For w_3 , x_1 can become as large as 32/12.

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$x_1 = 5/2, \quad x_2 = x_3 = 0$$

For w_1 , x_1 can become as large as 5/2 = 30/12.

For w_2 , x_1 can become as large as 11/4 = 33/12.

For w_3 , x_1 can become as large as 32/12.

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$
Subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$

subject to
$$w_1 = 5$$
 $-2 x_1 -3 x_2 -x_3$ $w_2 = 11 -4 x_1 -x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

For w_1 , x_1 can become as large as 5/2 = 30/12.

For w_2 , x_1 can become as large as 11/4 = 33/12.

For w_3 , x_1 can become as large as 32/12.

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$
 $w_2 = 11 -4 x_1 -x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5$ $-2 x_1 -3 x_2 -x_3$
 $w_2 = 11 -4 x_1 -x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

Maximise
$$\zeta = +5 \ x_1 + 4 \ x_2 + 3 \ x_3$$
 entering variable subject to $w_1 = 5 \ -2 \ x_1 \ -3 \ x_2 \ -x_3 \ w_2 = 11 \ -4 \ x_1 \ -x_2 \ -2 \ x_3 \ w_3 = 8 \ -3 \ x_1 \ -4 \ x_2 \ -2 \ x_3 \ x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

Maximise
$$\zeta = +5 \ x_1 + 4 \ x_2 + 3 \ x_3$$
 entering variable subject to $w_1 = 5 \ w_2 = 11 \ w_3 = 8 \ -3 \ x_1 \ -4 \ x_2 \ -2 \ x_3$ leaving variable $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

Maximise
$$\zeta = +5 \ x_1 + 4 \ x_2 + 3 \ x_3$$
 entering variable subject to $w_1 = 5 \ -2 \ x_1 \ -3 \ x_2 \ -x_3$ } just rearranging $w_2 = 11 \ -4 \ x_1 \ -x_2 \ -2 \ x_3$ $w_3 = 8 \ -3 \ x_1 \ -4 \ x_2 \ -2 \ x_3$ leaving variable $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

Maximise
$$\zeta = +5 \ x_1 + 4 \ x_2 + 3 \ x_3$$
 entering variable subject to $w_1 = 5 \ -2 \ x_1 \ -3 \ x_2 \ -x_3$ } just rearranging $w_2 = 11 \ -4 \ x_1 \ -x_2 \ -2 \ x_3$ what about here? $w_3 = 8 \ -3 \ x_1 \ -4 \ x_2 \ -2 \ x_3$ }

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

Maximise
$$\zeta = +5 \ x_1 +4 \ x_2 +3 \ x_3$$
 entering variable subject to $w_1 = 5 \ w_2 = 11 \ w_3 = 8 \ -3 \ x_1 \ -4 \ x_2 \ -2 \ x_3$ what about here? "row operations" $x_1, x_2, x_3, w_1, w_2, w_3 \geq 0$

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

$$+5 x_1$$

$$+4 x_2$$

$$+3 x_3$$

subject to
$$w_1 = 5$$
 $-2 x_1 -3 x_2 -x_3$ $w_2 = 11 -4 x_1 -x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

just rearranging

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

Maximise
$$\zeta = +5 \ x_1 + 4 \ x_2 + 3 \ x_3$$
 subject to $w_1 = 5 \quad -2 \ x_1 \quad -3 \ x_2 \quad -x_3 \quad \ \ \,$ just rearranging $w_2 = 11 \quad -4 \ x_1 \quad -x_2 \quad -2 \ x_3 \quad \ \ \,$ what about here? "row operations" $x_1, x_2, x_3, w_1, w_2, w_3 \geq 0$

Notice that
$$w_2 - 2w_1 = 11 - 4x_1 - x_2 - 2x_3 - 10 + 4x_1 + 6x_2 + 2x_3$$

Maximise
$$\zeta = +5 \ x_1 +4 \ x_2 +3 \ x_3$$
 subject to $w_1 = 5 \quad -2 \ x_1 \quad -3 \ x_2 \quad -x_3 \quad \ \ \,$ just rearranging $w_2 = 11 \quad -4 \ x_1 \quad -x_2 \quad -2 \ x_3 \quad \ \ \,$ what about here? "row operations" $x_1, x_2, x_3, w_1, w_2, w_3 \geq 0$

Notice that
$$w_2 - 2w_1 = 11 - 4x_1 - x_2 - 2x_3 - 10 + 4x_1 + 6x_2 + 2x_3$$

$$\Rightarrow w_2 = 1 + 2w_1 + 5x_2$$

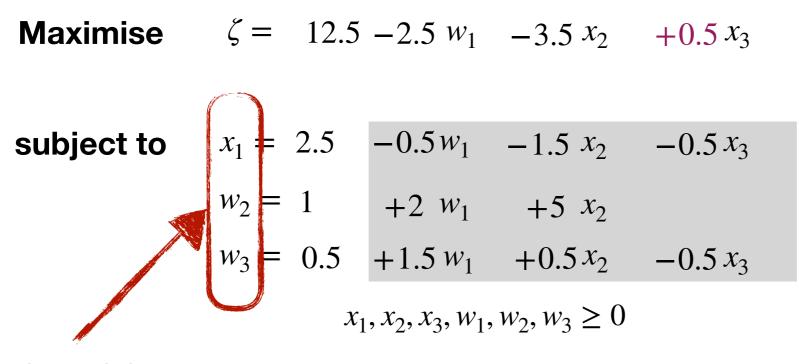
Maximise
$$\zeta = +5 \ x_1 +4 \ x_2 +3 \ x_3$$
 subject to $w_1 = 5 -2 \ x_1 -3 \ x_2 -x_3 \ w_2 = 11 -4 \ x_1 -x_2 -2 \ x_3 \ what about here? $w_3 = 8 -3 \ x_1 -4 \ x_2 -2 \ x_3$ "row operations" $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

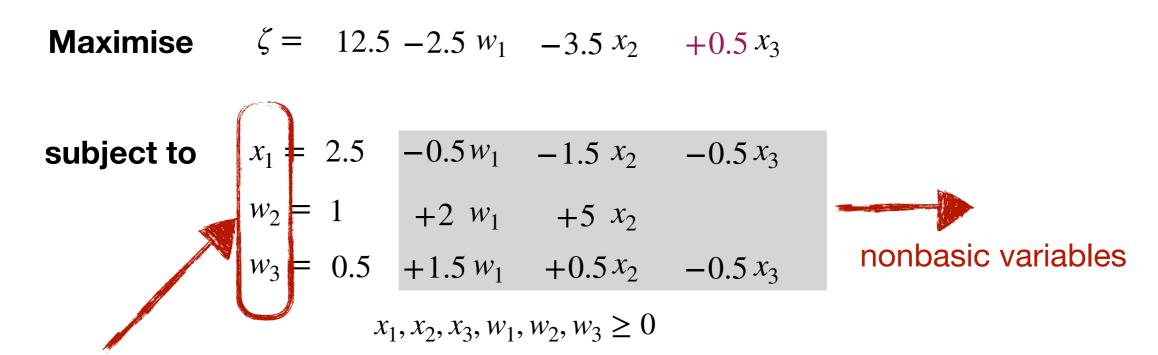
Notice that
$$w_2 - 2w_1 = 11 - 4x_1 - x_2 - 2x_3 - 10 + 4x_1 + 6x_2 + 2x_3$$

$$\Rightarrow w_2 = 1 + 2w_1 + 5x_2$$
 x_1 has been eliminated

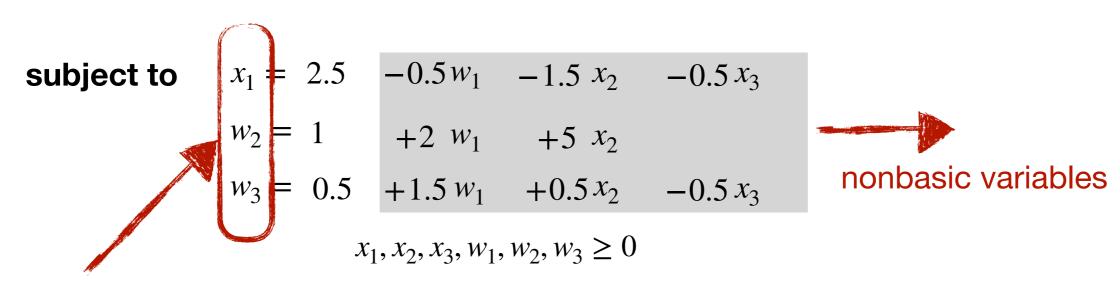
Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$



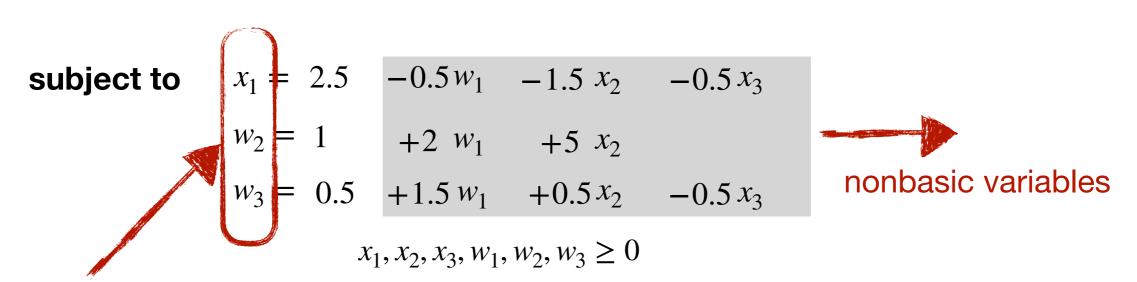


Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$



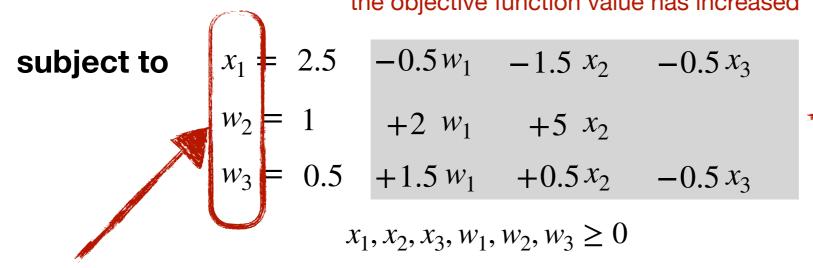
$$w_1 = 0, x_2 = 0 x_3 = 0$$

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

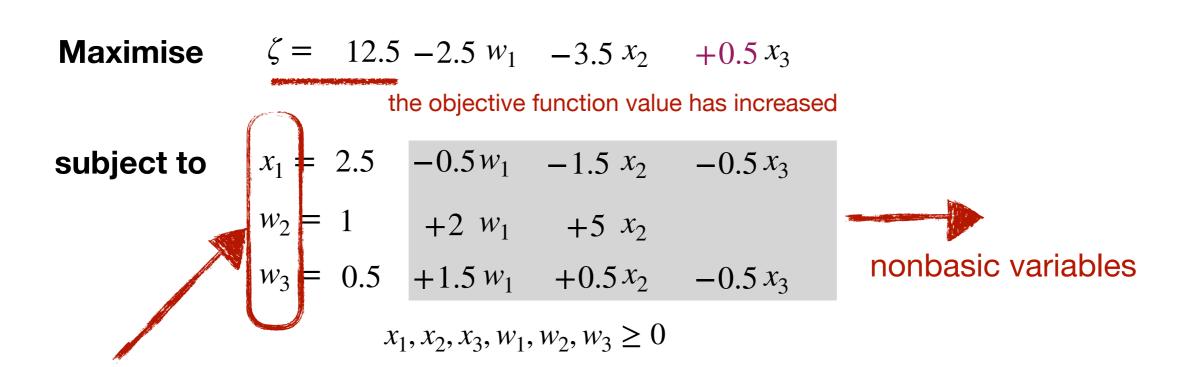


$$w_1 = 0$$
, $x_2 = 0$ $x_3 = 0$ $x_1 = 2.5$, $w_2 = 1$, $w_3 = 0.5$

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$ the objective function value has increased



$$w_1 = 0$$
, $x_2 = 0$ $x_3 = 0$ $x_1 = 2.5$, $w_2 = 1$, $w_3 = 0.5$



basic variables

$$w_1 = 0$$
, $x_2 = 0$ $x_3 = 0$ $x_1 = 2.5$, $w_2 = 1$, $w_3 = 0.5$

Which variable should we try to increase next?

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

For x_1 , x_3 can become as large as 2.5/0.5 = 5. For w_2 , x_3 can become as large as ∞ .

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$

For x_1 , x_3 can become as large as 2.5/0.5 = 5.

For w_2 , x_3 can become as large as ∞ .

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to
$$x_1 = 2.5$$
 $-0.5w_1$ $-1.5 x_2$ $-0.5 x_3$ $w_2 = 1$ $+2 w_1$ $+5 x_2$ $w_3 = 0.5$ $+1.5 w_1$ $+0.5 x_2$ $-0.5 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$x_3 = 1$$
, $w_1 = x_2 = 0$

For x_1 , x_3 can become as large as 2.5/0.5 = 5.

For w_2 , x_3 can become as large as ∞ .

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to
$$x_1 = 2.5$$
 $-0.5w_1$ $-1.5 x_2$ $-0.5 x_3$ $w_2 = 1$ $+2 w_1$ $+5 x_2$ $w_3 = 0.5$ $+1.5 w_1$ $+0.5 x_2$ $-0.5 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$x_3 = 1$$
, $w_1 = x_2 = 0$ $x_1 = 2$, $w_2 = 1$, $w_3 = 0$

For x_1 , x_3 can become as large as 2.5/0.5 = 5.

For w_2 , x_3 can become as large as ∞ .

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to
$$x_1 = 2.5$$
 $-0.5w_1$ -1.5 x_2 -0.5 x_3 $w_2 = 1$ $+2$ w_1 $+5$ x_2 entering variable $w_3 = 0.5$ $+1.5$ w_1 $+0.5$ x_2 -0.5 x_3 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_3 = 1$$
, $w_1 = x_2 = 0$ $x_1 = 2$, $w_2 = 1$, $w_3 = 0$

For x_1 , x_3 can become as large as 2.5/0.5 = 5.

For w_2 , x_3 can become as large as ∞ .

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

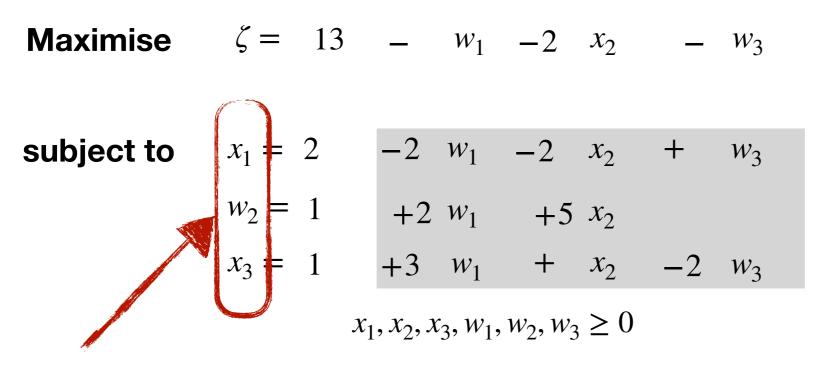
subject to
$$x_1 = 2.5$$
 $-0.5w_1$ -1.5 x_2 $-0.5x_3$ $w_2 = 1$ $+2$ w_1 $+5$ x_2 entering variable $w_3 = 0.5$ $+1.5$ w_1 $+0.5$ x_2 -0.5 x_3 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

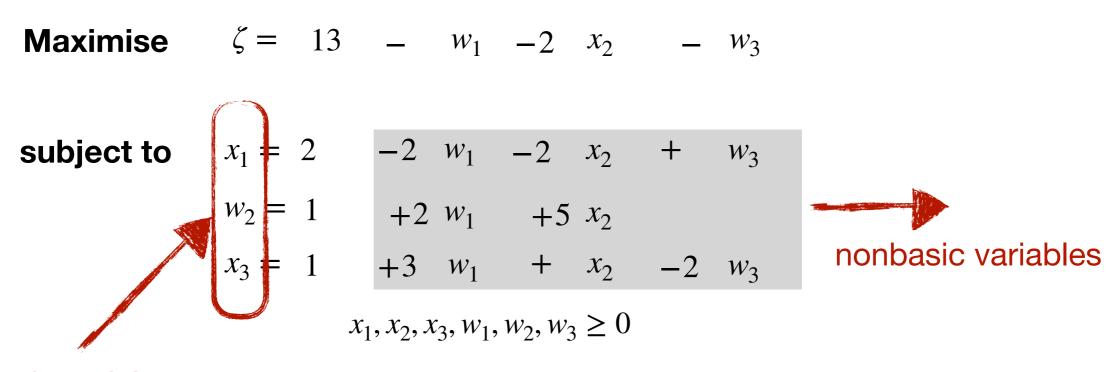
$$x_3 = 1$$
, $w_1 = x_2 = 0$ $x_1 = 2$, $w_2 = 1$, $w_3 = 0$

For x_1 , x_3 can become as large as 2.5/0.5 = 5.

For w_2 , x_3 can become as large as ∞ .

Maximise
$$\zeta = 13$$
 - w_1 -2 x_2 - w_3
subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3
 $w_2 = 1$ +2 w_1 +5 x_2
 $x_3 = 1$ +3 w_1 + x_2 -2 w_3
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$





Maximise
$$\zeta = 13$$
 - w_1 -2 x_2 - w_3
subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3
 $w_2 = 1$ +2 w_1 +5 x_2
 $x_3 = 1$ +3 w_1 + x_2 -2 w_3 nonbasic variables $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = 0$$
, $x_2 = 0$ $w_3 = 0$

Maximise $\zeta = 13$ - w_1 -2 x_2 - w_3 subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3 +2 w_1 +5 x_2 1 +3 w_1 + x_2 -2 w_3 nonbasic variables $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = 0$$
, $x_2 = 0$ $w_3 = 0$ $x_1 = 2$, $w_2 = 1$, $w_3 = 1$

Maximise
$$\zeta = 13 - w_1 - 2 x_2 - w_3$$

the objective function value has increased

$$x_1 = 2$$

$$w_2 = 1$$

$$x_3 = 1$$

subject to
$$x_1 = 2$$
 -2 w_1 -2 x_2 $+$ w_3 $w_2 = 1$ $+2$ w_1 $+5$ x_2 $+3$ w_1 $+$ x_2 -2 w_3 nonbasic variables $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$w_1 = 0$$
, $x_2 = 0$ $w_3 = 0$ $x_1 = 2$, $w_2 = 1$, $w_3 = 1$

$$x_1 = 2$$
, $w_2 = 1$, $w_3 = 1$

Maximise
$$\zeta = 13 - w_1 - 2 x_2 - w_3$$

the objective function value has increased

$$x_1 = 2$$

$$w_2 = 1$$

$$x_3 = 1$$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

basic variables

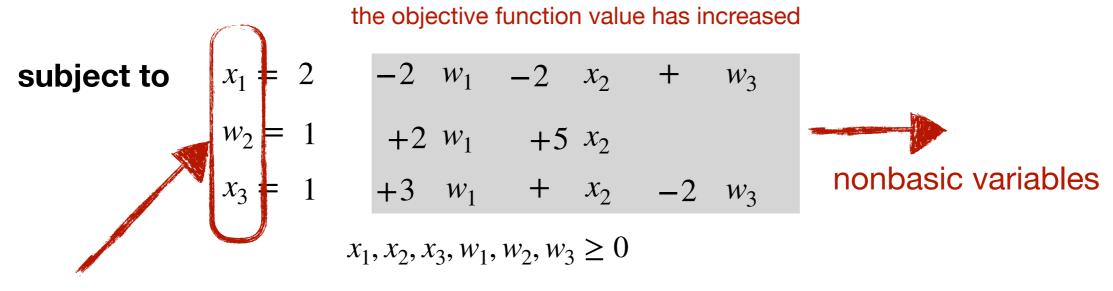
$$w_1 = 0$$
, $x_2 = 0$ $w_3 = 0$ $x_1 = 2$, $w_2 = 1$, $w_3 = 1$

$$x_1 = 2$$
, $w_2 = 1$, $w_3 = 1$

Which variable should we try to increase next?

Maximise
$$\zeta = 13 - w_1 - 2 x_2 - w_3$$

the objective function value has increased



$$-2 w_1 -2 x_2 + w_3$$
 $+2 w_1 +5 x_2$
 $+3 w_1 + x_2 -2 w_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 > 0$$

basic variables

$$w_1 = 0$$
, $x_2 = 0$ $w_3 = 0$ $x_1 = 2$, $w_2 = 1$, $w_3 = 1$

$$x_1 = 2$$
, $w_2 = 1$, $w_3 = 1$

Which variable should we try to increase next? We have computed an optimal solution!

1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

3. Find a basic feasible solution by setting the nonbasic variables to 0.

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i-\hat{a}_{ik}x_k\geq 0$).

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i-\hat{a}_{ik}x_k\geq 0$).

5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i-\hat{a}_{ik}x_k\geq 0$).

- 5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$
- 6. Compute the new dictionary making sure x_k only appears on the left.

Let's do it again, "mechanically"

Maximise
$$5x_1 + 4x_2 + 3x_3$$

subject to
$$2x_1 + 3x_2 + x_3 \le 5$$

 $4x_1 + x_2 + 2x + 3 \le 11$
 $3x_1 + 4x_2 + 2x_3 \le 8$
 $x_1, x_2, x_3 \ge 0$

1. Introduce slack variables

$$x_{n+1}, x_{n+2}, ..., x_m$$
 and ζ .

Maximise
$$\zeta = 5x_1 + 4x_2 + 3x_3$$

subject to
$$w_1 = 5 - 2x_1 + 3x_2 + x_3$$

 $w_2 = 11 - 4x_1 + x_2 + 2x + 3$
 $w_3 = 8 - 3x_1 + 4x_2 + 2x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

2. Write the original dictionary.

3. Find a basic feasible solution by setting the nonbasic variables to 0.

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$
 $w_2 = 11 -4 x_1 -x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$
 $w_2 = 11 -4 x_1 -x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = x_2 = x_3 = 0$$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

 $w_1 = 5, w_2 = 11, w_3 = 8$

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$
 $w_2 = 11 -4 x_1 -x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

 $x_1 = x_2 = x_3 = 0$

 $w_1 = 5, w_2 = 11, w_3 = 8$

 $x_1 = x_2 = x_3 = 0$

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$
 $w_2 = 11 -4 x_1 -x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise
$$\zeta = +5 \ x_1 + 4 \ x_2 + 3 \ x_3$$
 entering variable subject to $w_1 = 5 \ -2 x_1 - 3 \ x_2 - x_3$ $w_2 = 11 \ -4 \ x_1 - x_2 - 2 \ x_3$ $w_3 = 8 \ -3 \ x_1 - 4 \ x_2 - 2 \ x_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise
$$\zeta = +5 \ x_1 +4 \ x_2 +3 \ x_3$$
 entering variable subject to $w_1 = 5 \ -2 x_1 -3 \ x_2 -x_3 \ w_2 = 11 \ -4 \ x_1 -x_2 -2 \ x_3 \ w_3 = 8 \ -3 \ x_1 -4 \ x_2 -2 \ x_3 \ x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

 $w_1 = 5, w_2 = 11, w_3 = 8$

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i-\hat{a}_{ik}x_k\geq 0$).

 $x_1 = x_2 = x_3 = 0$

Maximise
$$\zeta = +5 \ x_1 +4 \ x_2 +3 \ x_3$$
 entering variable subject to $w_1 = 5 \ -2 x_1 -3 \ x_2 -x_3 \ w_2 = 11 \ -4 \ x_1 -x_2 -2 \ x_3 \ w_3 = 8 \ -3 \ x_1 -4 \ x_2 -2 \ x_3 \ x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

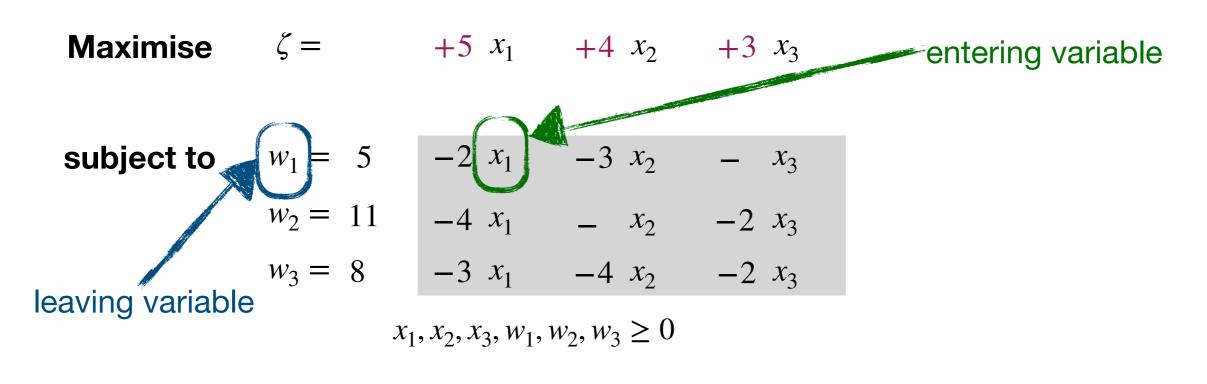
Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

 $w_1 = 5, w_2 = 11, w_3 = 8$

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i-\hat{a}_{ik}x_k\geq 0$).

$$5/2 \text{ vs } 11/4 \text{ vs } 8/3 \Rightarrow w_1$$

 $x_1 = x_2 = x_3 = 0$



$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i-\hat{a}_{ik}x_k\geq 0$).

$$5/2 \text{ vs } 11/4 \text{ vs } 8/3 \Rightarrow w_1$$

5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$

$$x_1 = 2.5, x_2 = 0, x_3 = 0$$

6. Compute the new dictionary making sure x_k only appears on the left.

Maximise
$$\zeta = 12.5 - 2.5 \ w_1 - 3.5 \ x_2 + 0.5 \ x_3$$

subject to $x_1 = 2.5 - 0.5 \ w_1 - 1.5 \ x_2 - 0.5 \ x_3$
 $w_2 = 1 + 2 \ w_1 + 5 \ x_2$
 $w_3 = 0.5 + 1.5 \ w_1 + 0.5 \ x_2 - 0.5 \ x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

- 5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$
- 6. Compute the new dictionary making sure x_k only appears on the left.

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

- 5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$
- 6. Compute the new dictionary making sure x_k only appears on the left.

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

- 5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$
- 6. Compute the new dictionary making sure x_{l} only appears on the left.

Maximise
$$\zeta = 12.5 - 2.5 \ w_1 - 3.5 \ x_2 + 0.5 \ x_3$$

subject to $x_1 = 2.5 - 0.5 \ w_1 - 1.5 \ x_2 - 0.5 \ x_3$
 $w_2 = 1 + 2 \ w_1 + 5 \ x_2$
 $w_3 = 0.5 + 1.5 \ w_1 + 0.5 \ x_2 - 0.5 \ x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise
$$\zeta = 12.5 - 2.5 \ w_1 - 3.5 \ x_2 + 0.5 \ x_3$$

subject to $x_1 = 2.5 - 0.5 \ w_1 - 1.5 \ x_2 - 0.5 \ x_3$
 $w_2 = 1 + 2 \ w_1 + 5 \ x_2$
 $w_3 = 0.5 + 1.5 \ w_1 + 0.5 \ x_2 - 0.5 \ x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$ entering variable
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise
$$\zeta = 12.5 - 2.5 \ w_1 - 3.5 \ x_2 + 0.5 \ x_3$$

subject to $x_1 = 2.5 - 0.5 \ w_1 - 1.5 \ x_2 - 0.5 \ x_3$
 $w_2 = 1 + 2 \ w_1 + 5 \ x_2$
 $w_3 = 0.5 + 1.5 \ w_1 + 0.5 \ x_2 - 0.5 \ x_3$ entering variable $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise
$$\zeta = 12.5 - 2.5 \ w_1 - 3.5 \ x_2 + 0.5 \ x_3$$

subject to $x_1 = 2.5 - 0.5 \ w_1 - 1.5 \ x_2 - 0.5 \ x_3$
 $w_2 = 1 + 2 \ w_1 + 5 \ x_2$
 $w_3 = 0.5 + 1.5 \ w_1 + 0.5 \ x_2 - 0.5 \ x_3$ entering variable $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

$$2.5/0.5 \text{ vs} \infty \text{ vs} 0.5/0.5 \Rightarrow w_3$$

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to
$$x_1 = 2.5$$
 $-0.5w_1$ $-1.5 x_2$ $-0.5 x_3$ $w_2 = 1$ $+2 w_1$ $+5 x_2$ entering variable $w_3 = 0.5$ $+1.5 w_1$ $+0.5 x_2$ $-0.5 x_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

$$2.5/0.5 \text{ vs} \infty \text{ vs} 0.5/0.5 \Rightarrow w_3$$

5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = 2.5, x_2 = 0, x_3 = 1$$

6. Compute the new dictionary making sure x_k only appears on the left.

Maximise
$$\zeta = 13$$
 - w_1 -2 x_2 - w_3 subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3 $w_2 = 1$ +2 w_1 +5 x_2 $x_3 = 1$ +3 w_1 + x_2 -2 w_3 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise
$$\zeta = 13$$
 - w_1 -2 x_2 - w_3 subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3 $w_2 = 1$ +2 w_1 +5 x_2 $x_3 = 1$ +3 w_1 + x_2 -2 w_3 $x_1, x_2, x_3, w_1, w_2, w_3 $\geq 0$$

Maximise
$$\zeta = 13$$
 - w_1 -2 x_2 - w_3
subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3
 $w_2 = 1$ +2 w_1 +5 x_2
 $x_3 = 1$ +3 w_1 + x_2 -2 w_3
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$
 $w_1 = x_2 = w_3 = 0$

Maximise
$$\zeta = 13$$
 - w_1 -2 x_2 - w_3
subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3
 $w_2 = 1$ +2 w_1 +5 x_2
 $x_3 = 1$ +3 w_1 + x_2 -2 w_3
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = w_3 = 0$$
 $x_1 = 2, w_2 = 1, w_3 = 1$

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

- 5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$
- 6. Compute the new dictionary making sure x_k only appears on the left.

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

- 5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$
- 6. Compute the new dictionary making sure x_k only appears on the left.

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

- 5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$
- 6. Compute the new dictionary making sure x_{l} only appears on the left.

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise
$$\zeta = 13$$
 - w_1 -2 x_2 - w_3 subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3 $w_2 = 1$ +2 w_1 +5 x_2 $x_3 = 1$ +3 w_1 + x_2 -2 w_3 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = w_3 = 0$$
 $x_1 = 2, w_2 = 1, w_3 = 1$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise
$$\zeta = 13$$
 - w_1 -2 x_2 - w_3
subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3
 $w_2 = 1$ +2 w_1 +5 x_2
 $x_3 = 1$ +3 w_1 + x_2 -2 w_3
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$
 $w_1 = x_2 = w_3 = 0$ $x_1 = 2, w_2 = 1, w_3 = 1$

We have computed an optimal solution!

Potential Problem

Potential Problem

Consider the following LP:

Potential Problem

Consider the following LP:

$$Maximise - 2x_1 - x_2$$

subject to
$$-x_1 + x_2 \le -1$$

 $-x_1 - 2x_2 \le -2$
 $x_2 \le 1$
 $x_1, x_2 \ge 0$

Maximise
$$\zeta = -2 \ x_1 - x_2$$

subject to $w_1 = -1 + x_1 - x_2$
 $w_2 = -2 + x_1 + 2 x_2$
 $w_3 = 1 - x_2$

Maximise
$$\zeta = -2 \ x_1 - x_2$$

subject to $w_1 = -1 + x_1 - x_2$
 $w_2 = -2 + x_1 + 2 x_2$
 $w_3 = 1 - x_2$
 $x_1, x_2, w_1, w_2, w_3 \ge 0$

Maximise
$$\zeta = -2 x_1 - x_2$$

subject to $w_1 = -1 + x_1 - x_2$
 $w_2 = -2 + x_1 + 2 x_2$
 $w_3 = 1 - x_2$

$$w_1 = x_2 = x_3 = 0$$

Maximise
$$\zeta = -2 x_1 - x_2$$

subject to $w_1 = -1 + x_1 - x_2$
 $w_2 = -2 + x_1 + 2 x_2$
 $w_3 = 1 - x_2$

$$w_1 = x_2 = x_3 = 0$$
 $w_1 = -1, w_2 = -2, w_3 = 1$

Maximise
$$\zeta = -2 \ x_1 - x_2$$

subject to $w_1 = -1 + x_1 - x_2$
 $w_2 = -2 + x_1 + 2 x_2$
 $w_3 = 1 - x_2$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = x_2 = x_3 = 0$$
 $w_1 = -1, w_2 = -2, w_3 = 1$

The dictionary is infeasible!

Consider the following LP:

$$Maximise - 2x_1 - x_2$$

subject to
$$-x_1 + x_2 \le -1$$

 $-x_1 - 2x_2 \le -2$
 $x_2 \le 1$
 $x_1, x_2 \ge 0$

Consider the following alternative LP:

Maximise
$$-x_0$$

subject to
$$-x_1 + x_2 - x_0 \le -1$$

 $-x_1 - 2x_2 - x_0 \le -2$
 $x_2 - x_0 \le 1$
 $x_1, x_2, x_0 \ge 0$

subject to
$$-x_1 + x_2 \le -1$$
 $-x_1 - 2x_2 \le -2$ $x_2 \le 1$ $x_1, x_2 \ge 0$

Maximise
$$-x_0$$

subject to $-x_1 + x_2 - x_0 \le -1$
 $-x_1 - 2x_2 - x_0 \le -2$
 $x_2 - x_0 \le 1$
 $x_1, x_2, x_0 \ge 0$

subject to
$$-x_1 + x_2 \le -1$$
 $-x_1 - 2x_2 \le -2$

$$x_2 \le 1$$

$$x_1, x_2 \ge 0$$

The first LP is feasible if any only if the second LP has an optimal solution of value 0.

Maximise
$$-x_0$$
 subject to $-x_1 +$

$$-x_1 + x_2 - x_0 \le -1$$

$$-x_1 - 2x_2 - x_0 \le -2$$

$$x_2 - x_0 \le 1$$

$$x_1, x_2, x_0 \ge 0$$

Initialisation

Consider the following alternative LP:

Maximise
$$-x_0$$

subject to
$$-x_1 + x_2 - x_0 \le -1$$

 $-x_1 - 2x_2 - x_0 \le -2$
 $x_2 - x_0 \le 1$
 $x_1, x_2, x_0 \ge 0$

Maximise
$$\zeta = -x_0$$

subject to $w_1 = -1$ $+ x_1 - x_2 + x_0$
 $w_2 = -2$ $+ x_1 + 2 x_2 + x_0$
 $w_3 = 1$ $- x_2 + x_0$

Maximise
$$\zeta = -x_0$$

subject to $w_1 = -1$ $+ x_1 - x_2 + x_0$
 $w_2 = -2$ $+ x_1 + 2 x_2 + x_0$
 $w_3 = 1$ $- x_2 + x_0$
 $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

Maximise
$$\zeta = -x_0$$

subject to $w_1 = -1$ $+ x_1 - x_2 + x_0$
 $w_2 = -2$ $+ x_1 + 2 x_2 + x_0$
 $w_3 = 1$ $- x_2 + x_0$
 $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Maximise
$$\zeta = -x_0$$

subject to $w_1 = -1$ $+ x_1 - x_2 + x_0$
 $w_2 = -2$ $+ x_1 + 2 x_2 + x_0$
 $w_3 = 1$ $- x_2 + x_0$

31,32,11,12,13,30 = 3

3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Entering variable: x_0

Maximise
$$\zeta = -x_0$$
 subject to $w_1 = -1 + x_1 - x_2 + x_0$ entering variable $w_2 = -2 + x_1 + 2 x_2 + x_0$ $w_3 = 1 - x_2 + x_0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Entering variable: x_0

Maximise
$$\zeta = -x_0$$
 subject to $w_1 = -1 + x_1 - x_2 + x_0 + x_1 + 2 x_2 + x_0$ entering variable $w_2 = -2 + x_1 + 2 x_2 + x_0$ $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Entering variable: x_0 Leaving variable: the one that is "most infeasible"

Maximise
$$\zeta=$$

$$-x_0$$
 subject to $w_1=-1$ $+x_1$ $-x_2$ $+x_0$ entering variable
$$w_2=-2$$
 $+x_1$ $+2$ x_2 $+x_0$ $-x_2$ $+x_0$ $x_1,x_2,w_1,w_2,w_3,x_0 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Entering variable: x_0 Leaving variable: the one that is "most infeasible"

Maximise
$$\zeta=$$

$$-x_0$$
 subject to $w_1=-1$ $+x_1$ $-x_2$ $+x_0$ entering variable
$$w_2=-2$$
 $+x_1$ $+2$ x_2 $+x_0$ $-x_2$ $+x_0$ $x_1,x_2,w_1,w_2,w_3,x_0 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Entering variable: x_0 Leaving variable: the one that is "most infeasible"

6. Compute the new dictionary making sure x_0 only appears on the left.

The new auxiliary problem dictionary

Maximise
$$\zeta = -2 + x_1 + 2 x_2 - w_2$$

subject to
$$w_1 = 1$$
 $-3 x_2 + w_2$ $x_0 = 2 - x_1 -2 x_2 + w_2$ $w_3 = 3 - x_1 -3 x_2 + w_2$

$$x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$$

The new auxiliary problem dictionary

Maximise
$$\zeta = -2 + x_1 + 2 x_2 - w_2$$

subject to $w_1 = 1 -3 x_2 + w_2$
 $x_0 = 2 - x_1 -2 x_2 + w_2$
 $w_3 = 3 - x_1 -3 x_2 + w_2$
 $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

The dictionary is feasible, we can apply the simplex method.

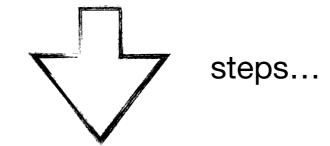
The new auxiliary problem dictionary

Maximise
$$\zeta = -2 + x_1 + 2 x_2 - w_2$$

subject to
$$w_1 = 1$$
 $-3 x_2 + w_2$ $x_0 = 2 - x_1 -2 x_2 + w_2$ $w_3 = 3 - x_1 -3 x_2 + w_2$

$$x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$$

The dictionary is feasible, we can apply the simplex method.



The final auxiliary problem dictionary

$$\mathbf{Maximise} \qquad \zeta = -x_0$$

subject to
$$x_2 = 0.33$$
 $-0.33 w_1 + 0.33 w_2$ $x_1 = 1.33$ $- x_0 + 0.67 w_1 + 0.33 w_2$ $w_3 = 2$ $+ x_0 + 0.33 w_1 + 0.33 w_2$

$$x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$$

The final auxiliary problem dictionary

$$\mathbf{Maximise} \qquad \zeta = -x_0$$

subject to
$$x_2 = 0.33$$
 $-0.33 w_1 + 0.33 w_2$ $x_1 = 1.33$ $-x_0 + 0.67 w_1 + 0.33 w_2$ $w_3 = 2$ $+x_0 + 0.33 w_1 + 0.33 w_2$

 $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

Remove x_0 from the constraints and substitute the original objective function.

$$\zeta =$$

$$-2 x_1$$

$$-x_2$$

subject to $x_2 = 0.33$

$$x_2 = 0.33$$

$$x_1 = 1.33$$

$$w_3 = 2$$

$$-0.33 w_1 + 0.33 w_2$$

$$+0.67w_1 +0.33w_2$$

$$+0.33 w_1 +0.33 w_2$$

$$x_1, x_2, w_1, w_2, w_3 \ge 0$$

Maximise
$$\zeta = -2 x_1 - x_2$$

subject to $x_2 = 0.33$ $-0.33 w_1 + 0.33 w_2$
 $x_1 = 1.33$ $+0.67 w_1 + 0.33 w_2$
 $w_3 = 2$ $+0.33 w_1 + 0.33 w_2$

We should have only nonbasic variables in the objective function.

Easy Fix

subject to $w_1 = -1$ + x_1 - x_2 $w_2 = -2$ + x_1 + x_2 $w_3 = 1$ - x_2

 $x_1, x_2, w_1, w_2, w_3 \ge 0$

Easy Fix

subject to
$$w_1 = -1 + x_1 - x_2$$

 $w_2 = -2 + x_1 + 2 x_2$
 $w_3 = 1 - x_2$

$$x_1, x_2, w_1, w_2, w_3 \ge 0$$

We have $\zeta = -2x_1 - x_2 = -3 - w_1 - w_2$

Maximise

$$\zeta =$$

$$-3 w_1 - w_2$$

subject to $x_2 = 0.33$

$$x_2 = 0.33$$

$$x_1 = 1.33$$

$$w_3 = 2$$

$$-0.33 w_1 + 0.33 w_2$$

$$+0.67w_1 +0.33w_2$$

$$+0.33 w_1 +0.33 w_2$$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

Maximise
$$\zeta = -3 \quad w_1 - w_2$$

subject to $x_2 = 0.33 \quad -0.33 \, w_1 + 0.33 \, w_2$
 $x_1 = 1.33 \quad +0.67 \, w_1 + 0.33 \, w_2$
 $w_3 = 2 \quad +0.33 \, w_1 + 0.33 \, w_2$

Maximise

$$\zeta =$$

$$-3 w_1 - w_2$$

subject to
$$x_2 = 0.33$$
 $-0.33 w_1 + 0.33 w_2$ $x_1 = 1.33$ $+0.67 w_1 + 0.33 w_2$ $w_3 = 2$ $+0.33 w_1 + 0.33 w_2$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$w_1 = w_2 = 0$$

Maximise

$$\zeta =$$

$$-3 w_1 - w_2$$

subject to
$$x_2 = 0.33$$
 $-0.33 w_1 + 0.33 w_2$ $x_1 = 1.33$ $+0.67 w_1 + 0.33 w_2$ $w_3 = 2$ $+0.33 w_1 + 0.33 w_2$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$w_1 = w_2 = 0$$

$$x_1 = 1.33, x_2 = 0.33, w_3 = 2$$

$$\zeta =$$

$$-3 w_1 - w_2$$

subject to
$$x_2 = 0.33$$
 $-0.33 w_1 + 0.33 w_2$ $x_1 = 1.33$ $+0.67 w_1 + 0.33 w_2$ $w_3 = 2$ $+0.33 w_1 + 0.33 w_2$

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = w_2 = 0$$

$$x_1 = 1.33, x_2 = 0.33, w_3 = 2$$

Maximise

$$\zeta =$$

$$-3 w_1 - w_2$$

subject to $x_2 = 0.33$

$$x_2 = 0.33$$
 $-0.33 w_1 + 0.33 w_2$
 $x_1 = 1.33$ $+0.67 w_1 + 0.33 w_2$
 $w_3 = 2$ $+0.33 w_1 + 0.33 w_2$

We have found an optimal solution!

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = w_2 = 0$$

$$x_1 = 1.33, x_2 = 0.33, w_3 = 2$$

Maximise

$$\zeta =$$

$$-3 w_1 - w_2$$

subject to

$$x_2 = 0.33$$
 $-0.33 w_1 + 0.33 w_2$
 $x_1 = 1.33$ $+0.67 w_1 + 0.33 w_2$
 $w_3 = 2$ $+0.33 w_1 + 0.33 w_2$

We have found an optimal solution!

We were lucky: we can only expect to find a feasible solution.

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = w_2 = 0$$

$$x_1 = 1.33, x_2 = 0.33, w_3 = 2$$

Maximise
$$\zeta = 5 + x_3 - x_1$$

subject to $x_2 = 5 + 2 x_3 - 3 x_1$
 $x_4 = 7 - 4 x_1$
 $x_5 = x_1$

 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Maximise
$$\zeta = 5 + x_3 - x_1$$

subject to $x_2 = 5 + 2 x_3 - 3 x_1$
 $x_4 = 7 - 4 x_1$
 $x_5 = x_1$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Maximise
$$\zeta = 5 + x_3 - x_1$$

subject to $x_2 = 5 + 2 x_3 - 3 x_1$
 $x_4 = 7 - 4 x_1$
 $x_5 = x_1$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i-\hat{a}_{ik}x_k\geq 0$).

Maximise

$$\zeta = 5$$

 $\zeta = 5 + \left(x_3\right)$

entering variable

subject to $x_2 = 5 + 2 x_3$

$$x_2 = 5$$

$$x_4 = 7$$

$$x_5 =$$

$$+2 x_3 -3 x_1$$

$$-4 x_1$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i-\hat{a}_{ik}x_k\geq 0$).

$$\zeta = 5$$

Maximise
$$\zeta = 5 + (x_3) - x_1$$

entering variable

subject to $x_2 = 5 + 2 x_3$

$$x_2 = 5$$

$$x_4 = 7$$

$$x_5 =$$

$$+2 x_3 -3 x_1$$

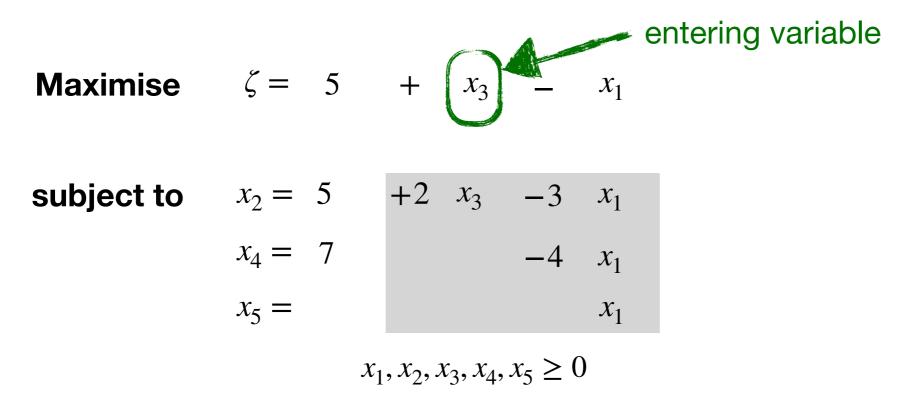
$$-4 x_1$$

 x_1

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

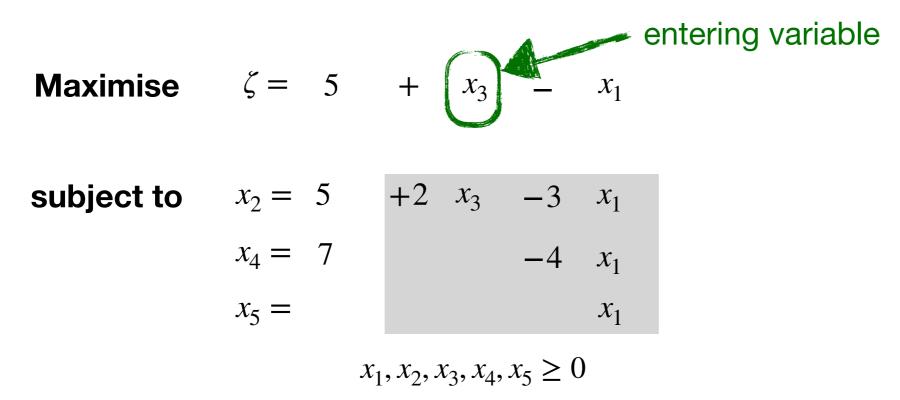
Maximise
$$\zeta = 5 + x_3 - x_1$$
 entering variable subject to $x_2 = 5 + 2 x_3 - 3 x_1$ $x_4 = 7 - 4 x_1$ $x_5 = x_1, x_2, x_3, x_4, x_5 \ge 0$

We can increase the value of some nonbasic variable, here x_3



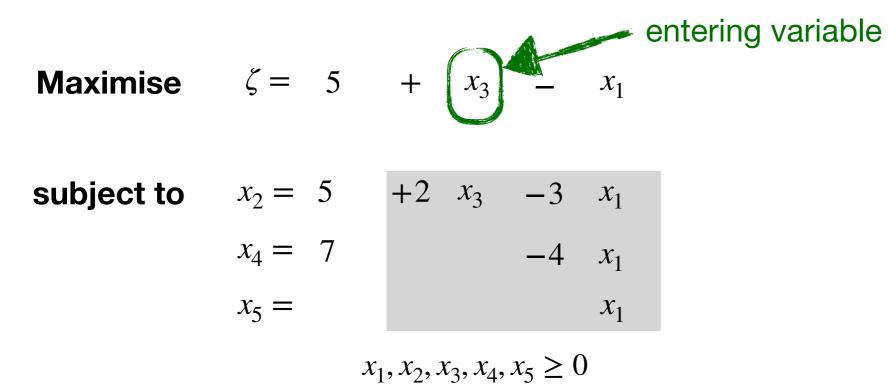
We can increase the value of some nonbasic variable, here x_3

We should not violate any constraints though!



We can increase the value of some nonbasic variable, here x_3

We should not violate any constraints though!



We can increase the value of some nonbasic variable, here x_3

We should not violate any constraints though!

Maximise $\zeta = 5 + x_3 - x_1$ entering variable subject to $x_2 = 5 + 2 x_3 - 3 x_1$ $x_4 = 7 - 4 x_1$ $x_5 = x_1$

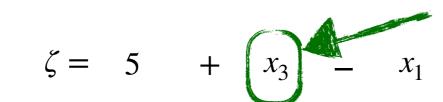
$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

We can increase the value of some nonbasic variable, here x_3

We should not violate any constraints though!

Maximise

$$\zeta = 5$$



entering variable

subject to

$$x_2 = 5$$

$$x_4 = 7$$

$$x_5 =$$

$$x_2 = 5 + 2 x_3 - 3 x_1$$

$$-4 x_1$$

 x_1

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

The LP is unbounded!

We can increase the value of some nonbasic variable, here x_3

We should not violate any constraints though!

Maximise
$$\zeta = 3$$
 $-0.5 x_1 + 2 x_2 -1.5 w_1$
subject to $x_3 = 1$ $-0.5 x_1$ $-0.5 w_1$
 $w_2 = x_1 - x_2 + w_1$
 $x_1, x_2, x_3, w_1, w_2 \ge 0$

Maximise
$$\zeta = 3$$
 $-0.5 x_1 + 2 x_2 -1.5 w_1$
subject to $x_3 = 1$ $x_1 - 0.5 x_1 -0.5 w_1$ entering variable $x_1, x_2, x_3, w_1, w_2 \ge 0$

$$\zeta = \zeta$$

Maximise
$$\zeta = 3$$
 $-0.5 x_1 + 2 x_2 -1.5 w_1$

subject to $x_3 = 1$

$$x_3 = 1$$

entering variable

leaving variable

$$-0.5 x_1$$
 $-0.5 w_1$ x_1 $-0.5 w_1$

 $x_1, x_2, x_3, w_1, w_2 \ge 0$

Maximise
$$\zeta=3$$
 $-0.5\ x_1+2\ x_2-1.5\ w_1$ subject to $x_3=1$ $-0.5\ x_1$ $-0.5\ w_1$ entering variable $x_1-x_2,x_3,w_1,w_2\geq 0$

We can increase the value of some nonbasic variable, here x_2

We should not violate any constraints though!

Maximise
$$\zeta=3$$
 $-0.5 \ x_1 + 2 \ x_2 - 1.5 \ w_1$ subject to $x_3=1$ $-0.5 \ x_1$ $-0.5 \ w_1$ entering variable $x_1 - x_2 + x_1$ $x_2, x_3, w_1, w_2 \ge 0$

We can increase the value of some nonbasic variable, here x_2

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

 x_2 cannot be increased! Are we stuck?

Maximise
$$\zeta = 3$$
 $-0.5 x_1 + 2 x_2 - 1.5 w_1$

subject to $x_3 = 1$ $-0.5 x_1$ $-0.5 w_1$ entering variable $x_1 - x_2 + x_1 - x_2 + x_2 - 1.5 w_1$

We can increase the value of some nonbasic variable, here x_2

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

 x_2 cannot be increased! Are we stuck?

Degeneracy! Next lecture

Historic Note

The Simplex Method was invented by George Dantzig in 1947.

It is still being used today in most of the LP-solvers.

Historic Note

The Simplex Method was invented by George Dantzig in 1947.

It is still being used today in most of the LP-solvers.

The origins of the simplex method go back to one of two famous unsolved problems in mathematical statistics proposed by Jerzy Neyman, which I mistakenly solved as a homework problem; it later

Dantzig. Origins of the Simplex Method. In A History of Scientific Computing, 1990.