Project: A Distributed Engine for Large-Scale Sparse Matrix and

Tensor Algebra

Amir Noohi

Programming for Data Science at Scale (PDSS)

2025-2026

Amir Noohi (Programming for Data Science at Scale (PDSS))

1/21

The Heartbeat of Modern Data Science

Matrix and tensor operations are the fundamental building blocks of countless algorithms. At
scale, their efficient execution is critical.

Applications: Analytics Recommenders
e PageRank (Web-scale graph analysis) - 7 ’

@ Recommendation Systems (e.g., .
Netflix) ‘

@ Deep Learning (Neural network
training)

e Scientific Computing (Simulations) W/
Physics

How do we multiply matrices with billions
of entries that won't fit on one machine?
Especially when they are sparse?

Amir Noohi (Programming for Data Science at Scale (PDSS)) 2/21

Your Mission

Your task is to design and implement a distributed engine for large-scale sparse matrix and
tensor operations using Apache Spark.

Core Goal: Implement the following fundamental operations efficiently in distributed
environment.

e Sparse Matrix-Vector Multiplication (SpMV): y = A - x
e Sparse Matrix-Matrix Multiplication (SpMM): C =A-B
o Tensor Algebra

You will need to think about the entire pipeline, from the user interface to the low-level data
layouts and execution strategies.

Amir Noohi (Programming for Data Science at Scale (PDSS)) 3/21

Defining Your Project Scope

You must implement a baseline and build your optimizations upon it. Please specify which of
the following combinations you will implement in your report.

Table: Select the combinations you will implement.

Operation Left Operand Right Operand Implemented? (v')
SpMV Sparse Matrix Dense Vector
SpMV Sparse Matrix Sparse Vector
SpMM Sparse Matrix Dense Matrix
SpMM Sparse Matrix Sparse Matrix

Tensor Algebra (e.g., MTTKRP)

Amir Noohi (Programming for Data Science at Scale (PDSS)) 4/21

The Components of Your Engine

We can break the system down into two major components.
1. Frontend (10%)

@ User-facing API. Request

eg, C=A*B

@ How does a user specify an

operation?
@ Handles different operand types

(Sparse & Dense). Execution
Engine

2. Execution Engine (35%)

TR Distributed
@ The "brain" of the system. Storage

@ Manages data representation.

@ Implements the distributed
algorithm.

Amir Noohi (Programming for Data Science at Scale (PDSS)) 5/21

How Do You Represent Data in a Distributed World?

A matrix is a 2D structure, but RDDs are a flat collection of records. How do you bridge this
gap?

Sparse Matrix A As an RDD of Tuples

(Row, Col, Val)
4—"T 0 -
12 9 _\} (0, 0, 12)

\ ©, 2, 9

2, 1, 7

5T — (3, 3, 5)

Your choice of data layout is the single most important decision you will make.

Data Layout Breakdown (10%):
e Loading mechanisms: 2%
@ Dense representations: 4% (2% matrix, 2% vector)
@ Sparse representations: 4% (2% matrix, 2% vector)

Amir Noohi (Programming for Data Science at Scale (PDSS)) 6 /21

Implementing the Multiplication Logic

You must implement the core logic using Spark’s distributed data-parallel operations.

o Core Idea: Decompose the distributed tensor operation into many small, independent
calculations that can be run in parallel across multiple workers.

@ Your Toolkit: RDD operations like ‘map’, ‘flatMap’, ‘groupByKey’, and especially ‘join‘.

The use of ‘collect()’ on any large RDD to bring data to the driver for computation is strictly
forbidden. The computation must remain parallelized across cores!

Runtime Engine Requirements (15%):
@ Implement each operation in terms of RDD operations (4x3% = 12%)

@ Ensure using joins and no unnecessary collect (3%)

Amir Noohi (Programming for Data Science at Scale (PDSS)) 7/21

Distributed Optimizations: Reducing Data Movement & Memory Pressure

A naive implementation will create excessive data shuffling between workers. The solution is
intelligent Data Partitioning.

Naive Approach (Slow) Partition-Aware (Fast)

Worker 1 Worker 1 Worker 1 Worker 1
Worker 2 Worker 2 Worker 2 Worker 2
Worker 3 Worker 3 Worker 3 Worker 3

Key Techniques (10%):
@ Hashing strategies for optimal data distribution

@ Partitioning schemes to minimize data movement

Amir Noohi (Programming for Data Science at Scale (PDSS)) 8/21

Advanced Techniques for Getting Full Marks

Once you have a working, optimized engine, explore more advanced techniques. These are excellent
topics for the " Further Efficiency” section of your report.

Advanced Data Layout (5%)

The COO format is simple but not always the most efficient. Research and consider layouts like:

@ CSR, DCSR: Very efficient for SpMV.

@ CSF: If implementing tensor algebra.

Algebraic Optimizations (5%)

Can you use mathematical properties to reduce the amount of computation or communication?

@ For example, in a chain of multiplications (A - B - C), the order matters!

@ Other algabraic optimization like distributivity law (A- (B+C) =A-B+A-C).

Amir Noohi (Programming for Data Science at Scale (PDSS)) 9/21

If you can’t measure it, you can't improve it!

A huge part of this project is to scientifically prove that your design choices and
optimizations are effective. Your evaluation must be rigorous.
@ Micro benchmarks (5%):
» Performance analysis against DataFrame
o Impact of Distributed Optimization (10%):
» Measure effectiveness of your distributed optimizations
e Further Ablation Study (5%):
» Advanced Data Layout: 2.5%
» Algebraic Optimization: 2.5%
e End-to-end evaluation (10%):
» Complete system performance evaluation
Another competitor (5%):
» Compare against alternative real-world implementations (beyond a single tensor operator)
Real-world application (5%):
» Demonstrate with practical use cases (beyond a single tensor operator)

Amir Noohi (Programming for Data Science at Scale (PDSS)) 10 / 21

Two-Part Coursework System

This project consists of two interconnected courseworks:

Coursework 1 (70%)

Coursework 2 (30%)

Group Project Implementation Peer Review Process
@ Groups of 3 students o Individual peer review assignment
@ Implement distributed engine @ Review another group’s submission
@ All group members submit identical @ 4 sections: System Design, Backend,
files Evaluation, Discussion
@ Released: 7 Oct (Tue noon) @ Minimum word counts & detailed
e Deadline: 14 Nov (Fri noon) feedback required
o Feedback by: 5 Dec 2025) @ Released: 17 Nov (Mon noon)
e Deadline: 28 Nov (Fri noon)
o Feedback by: 12 Dec 2025

Amir Noohi (Programming for Data Science at Scale (PDSS)) 11 /21

Important Submission Policies

CW?2 - Extensions Allowed

Rule 2: No Extensions and no ETAs Rule 1: Extensions (4 days) and ETAs (7
permitted because it is group work. Late days) permitted. Penalties applied to late
individual submissions score zero. Penalties submissions.

applied to late group work submissions.

Key Difference: CW1 has strict no-extension policy, while CW?2 allows extensions with
penalties.

Amir Noohi (Programming for Data Science at Scale (PDSS)) 12 /21

Complete Submission Requirements

Deliverables Checklist:

o

Source Code - Complete
Scala/Spark implementation

Report (PDF) - 8-12 pages with
results

README.md - Setup & running
instructions

Dependencies - build.sbt
configuration

Test Data - Sample datasets

Results - Benchmark graphs &
analysis

Required File Structure:

PDSS_Project_[GroupID]

[DIR] src/ — Scala source code
[DIR] data/ — Sample datasets
[DIR] results/ — Benchmarks
[FILE] report.pdf — Final report
[FILE] README.md — Instructions
[FILE] build.sbt — Dependencies

Amir Noohi (Programming for Data Science at Scale (PDSS)) 13 /21

Complete Process Overview

Step 1: LEARN Step 2: HotCRP Step 3: Yam-
Submission Notification mer Review
All 3 members submit Email notifications Complete assigned
identical ZIP files for peer reviews peer reviews (VPN)

CW1 Deadline After CW1 CW2 Deadline
Submit to LEARN Check email Review deadline

ZIP Format: PDSS_Project_[GroupID].zip

@ All students must submit to LEARN
@ Check email for HotCRP notifications

o Yammer address: yammer.inf.ed.ac.uk

Amir Noohi (Programming for Data Science at Scale (PDSS)) 14 /21

CW?2 - HotCRP Notifications & Yammer Reviews

You MUST use School of Informatics VPN to access yammer.inf.ed.ac.uk
@ Test VPN access well before the review deadline

o Contact Computing Support if you have VPN issues
o Complete your assigned reviews via Yammer platform

LEARN submission includes honesty section:
@ Declare how each group member contributed

@ Report any group work issues in advance

o Contact staff if problems arise with group mates

Amir Noohi (Programming for Data Science at Scale (PDSS)) 15 /21

What You Need to Review (CW2 - 30%)

You will review another group’s report in 4 sections:

System Design (25%) Backend & Optimizations (30%)
3+ points (60+ words each) 4+ points (60+ words each)
@ Strengths with examples @ Runtime, data layouts, optimizations
@ Weaknesses with solutions) @ Concrete improvement suggestions |
Evaluation (30%) Overall Discussion (15%)
3+ points (60+ words each) 1 summary (60+ words)
@ Assess benchmarks & ablation @ Future work assessment
® Suggest better strategies) @ Open challenges discussion)

Key: All feedback must be constructive and actionable!

Amir Noohi (Programming for Data Science at Scale (PDSS)) 16 / 21

How Your Overall Grade is Calculated

Coursework 1 (70%) Coursework 2 (30%)

@ Introduction (10%) Peer Review Quality:

@ Frontend (10%) @ System Design (25%)

@ Execution Engine (35%) @ Backend & Optimizations (30%)

@ Further Efficiency (10%) @ Evaluation (30%)

@ Performance Evaluation (30%) @ Overall Discussion (15%) |
@ Conclusion (5%))

Final Grade = (CW1 Grade x 0.7) + (CW2 Grade x 0.3)

Amir Noohi (Programming for Data Science at Scale (PDSS)) 17 /21

Working in Groups & Review Process

Group Formation (CW1)
@ Groups of exactly 3 students
@ Group enrollment: 25 Sept (Thu noon) to 7 Oct (Mon noon)

@ Critical: All 3 members must submit identical files

Peer Review Assignment (CW2)

@ System randomly assigns reviews after CW1 deadline

@ Each student reviews one other group’s submission

@ Reviews are individual work (anonymous process)

You cannot review your own group's submission. The system ensures no conflicts of interest.

Amir Noohi (Programming for Data Science at Scale (PDSS)) 18 / 21

Support & Additional Resources

Discussion Forum: Piazza
@ Ask technical questions
@ Share (non-solution) resources
o Clarify project requirements
Where to Run Your Code:
@ Your laptop - Local development and testing
@ Lab machines - More cores and memory available
@ student.compute - School of Informatics compute servers
Useful Resources:
@ Apache Spark Scala API: spark.apache.org/docs/latest/api/scala

o SBT Documentation: www.scala-sbt.org/documentation.html

Amir Noohi (Programming for Data Science at Scale (PDSS)) 19 /21

What's Allowed & What's Not

All submitted work is expected to be your own. Al tools should not be used for this assessment.J

Allowed
@ Discussing high-level approaches and algorithms

@ Sharing publicly available datasets and benchmarks

@ Sharing or copying source code between students

@ Submitting work that is not substantially your own

o Plagiarizing text in your report

When in doubt, ask! It's always better to clarify than to accidentally violate academic
integrity policies.
Amir Noohi (Programming for Data Science at Scale (PDSS)) 20 /21

Questions?

Amir Noohi (Programming for Data Science at Scale (PDSS)) 21 /21

	Introduction
	System Architecture
	Further Efficiency
	Performance Evaluation
	Conclusion
	Submission & Practical Information

