
Project: A Distributed Engine for Large-Scale Sparse Matrix and
Tensor Algebra

Amir Noohi

Programming for Data Science at Scale (PDSS)

2025–2026

Amir Noohi (Programming for Data Science at Scale (PDSS)) 1 / 21

The Heartbeat of Modern Data Science

Matrix and tensor operations are the fundamental building blocks of countless algorithms. At
scale, their efficient execution is critical.

Applications:

PageRank (Web-scale graph analysis)

Recommendation Systems (e.g.,
Netflix)

Deep Learning (Neural network
training)

Scientific Computing (Simulations)

The Challenge

How do we multiply matrices with billions
of entries that won’t fit on one machine?
Especially when they are sparse?

Data

Neural NetsGraphs

Physics

RecommendersAnalytics

Amir Noohi (Programming for Data Science at Scale (PDSS)) 2 / 21

Your Mission

Your task is to design and implement a distributed engine for large-scale sparse matrix and
tensor operations using Apache Spark.

Core Goal: Implement the following fundamental operations efficiently in distributed
environment.

Sparse Matrix-Vector Multiplication (SpMV): y = A · x
Sparse Matrix-Matrix Multiplication (SpMM): C = A · B
Tensor Algebra

You will need to think about the entire pipeline, from the user interface to the low-level data
layouts and execution strategies.

Amir Noohi (Programming for Data Science at Scale (PDSS)) 3 / 21

Defining Your Project Scope

You must implement a baseline and build your optimizations upon it. Please specify which of
the following combinations you will implement in your report.

Table: Select the combinations you will implement.

Operation Left Operand Right Operand Implemented? (✓)

SpMV Sparse Matrix Dense Vector
SpMV Sparse Matrix Sparse Vector

SpMM Sparse Matrix Dense Matrix
SpMM Sparse Matrix Sparse Matrix

Tensor Algebra (e.g., MTTKRP)

Amir Noohi (Programming for Data Science at Scale (PDSS)) 4 / 21

The Components of Your Engine

We can break the system down into two major components.

1. Frontend (10%)

User-facing API.

How does a user specify an
operation?

Handles different operand types
(Sparse & Dense).

2. Execution Engine (35%)

The ”brain” of the system.

Manages data representation.

Implements the distributed
algorithm.

User
Request

Frontend

Execution
Engine

Distributed
Storage

e.g., C = A * B

Amir Noohi (Programming for Data Science at Scale (PDSS)) 5 / 21

How Do You Represent Data in a Distributed World?

A matrix is a 2D structure, but RDDs are a flat collection of records. How do you bridge this
gap?

Sparse Matrix A

12 9

7

5

As an RDD of Tuples

(Row, Col, Val)

(0, 0, 12)

(0, 2, 9)

(2, 1, 7)

(3, 3, 5)

Your choice of data layout is the single most important decision you will make.

Data Layout Breakdown (10%):

Loading mechanisms: 2%

Dense representations: 4% (2% matrix, 2% vector)

Sparse representations: 4% (2% matrix, 2% vector)

Amir Noohi (Programming for Data Science at Scale (PDSS)) 6 / 21

Implementing the Multiplication Logic

You must implement the core logic using Spark’s distributed data-parallel operations.

Core Idea: Decompose the distributed tensor operation into many small, independent
calculations that can be run in parallel across multiple workers.

Your Toolkit: RDD operations like ‘map‘, ‘flatMap‘, ‘groupByKey‘, and especially ‘join‘.

Warning!

The use of ‘collect()‘ on any large RDD to bring data to the driver for computation is strictly
forbidden. The computation must remain parallelized across cores!

Runtime Engine Requirements (15%):

Implement each operation in terms of RDD operations (4×3% = 12%)

Ensure using joins and no unnecessary collect (3%)

Amir Noohi (Programming for Data Science at Scale (PDSS)) 7 / 21

Distributed Optimizations: Reducing Data Movement & Memory Pressure

A naive implementation will create excessive data shuffling between workers. The solution is
intelligent Data Partitioning.

Naive Approach (Slow)

Worker 1 Worker 1

Worker 2 Worker 2

Worker 3 Worker 3

Partition-Aware (Fast)

Worker 1 Worker 1

Worker 2 Worker 2

Worker 3 Worker 3

Key Techniques (10%):

Hashing strategies for optimal data distribution

Partitioning schemes to minimize data movement

Amir Noohi (Programming for Data Science at Scale (PDSS)) 8 / 21

Advanced Techniques for Getting Full Marks

Once you have a working, optimized engine, explore more advanced techniques. These are excellent
topics for the ”Further Efficiency” section of your report.

Advanced Data Layout (5%)

The COO format is simple but not always the most efficient. Research and consider layouts like:

CSR, DCSR: Very efficient for SpMV.

CSF: If implementing tensor algebra.

Algebraic Optimizations (5%)

Can you use mathematical properties to reduce the amount of computation or communication?

For example, in a chain of multiplications (A · B · C), the order matters!

Other algabraic optimization like distributivity law (A · (B + C) = A · B + A · C).

Amir Noohi (Programming for Data Science at Scale (PDSS)) 9 / 21

If you can’t measure it, you can’t improve it!

A huge part of this project is to scientifically prove that your design choices and
optimizations are effective. Your evaluation must be rigorous.

Micro benchmarks (5%):
▶ Performance analysis against DataFrame

Impact of Distributed Optimization (10%):
▶ Measure effectiveness of your distributed optimizations

Further Ablation Study (5%):
▶ Advanced Data Layout: 2.5%
▶ Algebraic Optimization: 2.5%

End-to-end evaluation (10%):
▶ Complete system performance evaluation

Another competitor (5%):
▶ Compare against alternative real-world implementations (beyond a single tensor operator)

Real-world application (5%):
▶ Demonstrate with practical use cases (beyond a single tensor operator)

Amir Noohi (Programming for Data Science at Scale (PDSS)) 10 / 21

Two-Part Coursework System

This project consists of two interconnected courseworks:

Coursework 1 (70%)

Group Project Implementation

Groups of 3 students

Implement distributed engine

All group members submit identical
files

Released: 7 Oct (Tue noon)

Deadline: 14 Nov (Fri noon)

Feedback by: 5 Dec 2025

Coursework 2 (30%)

Peer Review Process

Individual peer review assignment

Review another group’s submission

4 sections: System Design, Backend,
Evaluation, Discussion

Minimum word counts & detailed
feedback required

Released: 17 Nov (Mon noon)

Deadline: 28 Nov (Fri noon)

Feedback by: 12 Dec 2025

Amir Noohi (Programming for Data Science at Scale (PDSS)) 11 / 21

Important Submission Policies

CW1 - No Extensions

Rule 2: No Extensions and no ETAs
permitted because it is group work. Late
individual submissions score zero. Penalties
applied to late group work submissions.

CW2 - Extensions Allowed

Rule 1: Extensions (4 days) and ETAs (7
days) permitted. Penalties applied to late
submissions.

Key Difference: CW1 has strict no-extension policy, while CW2 allows extensions with
penalties.

Amir Noohi (Programming for Data Science at Scale (PDSS)) 12 / 21

Complete Submission Requirements

Deliverables Checklist:

1 Source Code - Complete
Scala/Spark implementation

2 Report (PDF) - 8-12 pages with
results

3 README.md - Setup & running
instructions

4 Dependencies - build.sbt
configuration

5 Test Data - Sample datasets

6 Results - Benchmark graphs &
analysis

Required File Structure:

PDSS Project [GroupID]

[DIR] src/ → Scala source code
[DIR] data/ → Sample datasets
[DIR] results/ → Benchmarks
[FILE] report.pdf → Final report
[FILE] README.md → Instructions
[FILE] build.sbt → Dependencies

Important

Submit as ZIP: PDSS Project [GroupID].zip via LEARN

Amir Noohi (Programming for Data Science at Scale (PDSS)) 13 / 21

Complete Process Overview

Step 1: LEARN
Submission

All 3 members submit
identical ZIP files

Step 2: HotCRP
Notification

Email notifications
for peer reviews

Step 3: Yam-
mer Review

Complete assigned
peer reviews (VPN)

CW1 Deadline
Submit to LEARN

After CW1
Check email

CW2 Deadline
Review deadline

ZIP Format: PDSS Project [GroupID].zip

Key Points

All students must submit to LEARN

Check email for HotCRP notifications

Yammer address: yammer.inf.ed.ac.uk

Amir Noohi (Programming for Data Science at Scale (PDSS)) 14 / 21

CW2 - HotCRP Notifications & Yammer Reviews

VPN Required for Yammer Reviews

You MUST use School of Informatics VPN to access yammer.inf.ed.ac.uk

Test VPN access well before the review deadline

Contact Computing Support if you have VPN issues

Complete your assigned reviews via Yammer platform

Honesty Declaration Required

LEARN submission includes honesty section:

Declare how each group member contributed

Report any group work issues in advance

Contact staff if problems arise with group mates

Amir Noohi (Programming for Data Science at Scale (PDSS)) 15 / 21

What You Need to Review (CW2 - 30%)

You will review another group’s report in 4 sections:

System Design (25%)

3+ points (60+ words each)

Strengths with examples

Weaknesses with solutions

Evaluation (30%)

3+ points (60+ words each)

Assess benchmarks & ablation

Suggest better strategies

Backend & Optimizations (30%)

4+ points (60+ words each)

Runtime, data layouts, optimizations

Concrete improvement suggestions

Overall Discussion (15%)

1 summary (60+ words)

Future work assessment

Open challenges discussion

Key: All feedback must be constructive and actionable!

Amir Noohi (Programming for Data Science at Scale (PDSS)) 16 / 21

How Your Overall Grade is Calculated

Coursework 1 (70%)

Introduction (10%)

Frontend (10%)

Execution Engine (35%)

Further Efficiency (10%)

Performance Evaluation (30%)

Conclusion (5%)

Coursework 2 (30%)

Peer Review Quality:

System Design (25%)

Backend & Optimizations (30%)

Evaluation (30%)

Overall Discussion (15%)

Final Grade = (CW1 Grade × 0.7) + (CW2 Grade × 0.3)

Amir Noohi (Programming for Data Science at Scale (PDSS)) 17 / 21

Working in Groups & Review Process

Group Formation (CW1)

Groups of exactly 3 students

Group enrollment: 25 Sept (Thu noon) to 7 Oct (Mon noon)

Critical: All 3 members must submit identical files

Peer Review Assignment (CW2)

System randomly assigns reviews after CW1 deadline

Each student reviews one other group’s submission

Reviews are individual work (anonymous process)

Important

You cannot review your own group’s submission. The system ensures no conflicts of interest.

Amir Noohi (Programming for Data Science at Scale (PDSS)) 18 / 21

Support & Additional Resources

Discussion Forum: Piazza

Ask technical questions

Share (non-solution) resources

Clarify project requirements

Where to Run Your Code:

Your laptop - Local development and testing

Lab machines - More cores and memory available

student.compute - School of Informatics compute servers

Useful Resources:

Apache Spark Scala API: spark.apache.org/docs/latest/api/scala

SBT Documentation: www.scala-sbt.org/documentation.html

Amir Noohi (Programming for Data Science at Scale (PDSS)) 19 / 21

What’s Allowed & What’s Not

Academic Integrity Statement

All submitted work is expected to be your own. AI tools should not be used for this assessment.

Allowed

Discussing high-level approaches and algorithms

Sharing publicly available datasets and benchmarks

NOT Allowed

Sharing or copying source code between students

Submitting work that is not substantially your own

Plagiarizing text in your report

When in doubt, ask! It’s always better to clarify than to accidentally violate academic
integrity policies.

Amir Noohi (Programming for Data Science at Scale (PDSS)) 20 / 21

Questions?

Amir Noohi (Programming for Data Science at Scale (PDSS)) 21 / 21

	Introduction
	System Architecture
	Further Efficiency
	Performance Evaluation
	Conclusion
	Submission & Practical Information

