Introduction to Algorithms and Data Structures

Lecture 4: More asymptotics: O, Ω and Θ

John Longley

School of Informatics University of Edinburgh

25 September 2025

Recall our runtime functions T_I , T_M for **InsertSort**, **MergeSort**. We've mentioned (and will prove in Lecture 5) that T_M grows slowly relative to T_I : $T_M = o(T_I)$.

Recall our runtime functions T_I , T_M for **InsertSort**, **MergeSort**. We've mentioned (and will prove in Lecture 5) that T_M grows slowly relative to T_I : $T_M = o(T_I)$.

Can we place growth rates of T_I , T_M on some absolute scale?

Recall our runtime functions T_I , T_M for **InsertSort**, **MergeSort**. We've mentioned (and will prove in Lecture 5) that T_M grows slowly relative to T_I : $T_M = o(T_I)$.

Can we place growth rates of T_I , T_M on some absolute scale?

E.g. consider the following hierarchy of 'simple' functions:

$$f_0(n) = 1$$
 $f_1(n) = \lg n$ $f_2(n) = \sqrt{n}$
 $f_3(n) = n$ $f_4(n) = n \lg n$ $f_5(n) = n^2$
 $f_6(n) = n^3$ $f_7(n) = 2^n$ $f_8(n) = 2^{2^n}$...

Here $f_0 \in o(f_1), f_1 \in o(f_2), ...$

Recall our runtime functions T_I , T_M for **InsertSort**, **MergeSort**. We've mentioned (and will prove in Lecture 5) that T_M grows slowly relative to T_I : $T_M = o(T_I)$.

Can we place growth rates of T_I , T_M on some absolute scale?

E.g. consider the following hierarchy of 'simple' functions:

Here $f_0 \in o(f_1)$, $f_1 \in o(f_2)$, ...

Which of the above functions do T_I and T_M most closely 'resemble' in their essential growth rate?

We're going to define a relation

$$f$$
 is $\Theta(g)$

Read as 'f has same essential growth rate as g'.

We're going to define a relation

$$f$$
 is $\Theta(g)$

Read as 'f has same essential growth rate as g'.

Often used to classify 'complicated' functions via 'simple' ones.

E.g. it will turn out that T_I is $\Theta(n^2)$, and T_M is $\Theta(n \lg n)$.

We're going to define a relation

$$f$$
 is $\Theta(g)$

Read as 'f has same essential growth rate as g'.

Often used to classify 'complicated' functions via 'simple' ones.

E.g. it will turn out that T_I is $\Theta(n^2)$, and T_M is $\Theta(n \lg n)$.

Approach: First define

```
f is O(g) 'f grows no faster than g' f is \Omega(g) 'f grows no slower than g'
```

We're going to define a relation

$$f$$
 is $\Theta(g)$

Read as 'f has same essential growth rate as g'.

Often used to classify 'complicated' functions via 'simple' ones.

E.g. it will turn out that T_I is $\Theta(n^2)$, and T_M is $\Theta(n \lg n)$.

Approach: First define

f is
$$O(g)$$
 'f grows no faster than g'
f is $\Omega(g)$ 'f grows no slower than g'

Then say:

$$f$$
 is $\Theta(g) \iff f$ is $O(g)$ and f is $\Omega(g)$.

Big O

The spirit of asymptotics is that:

- ▶ we only care about behaviour 'in the limit' can discard 'small' values of n,
- constant scaling factors are washed out.

Big O

The spirit of asymptotics is that:

- ▶ we only care about behaviour 'in the limit' can discard 'small' values of n,
- constant scaling factors are washed out.

So let's say f grows no faster than g, if f is eventually bounded above by some (sufficiently large) multiple Cg of g:

$$\exists C > 0. \ \exists N. \ \forall n \geq N. \ f(n) \leq Cg(n)$$

Big O

The spirit of asymptotics is that:

- ▶ we only care about behaviour 'in the limit' can discard 'small' values of n,
- constant scaling factors are washed out.

So let's say f grows no faster than g, if f is eventually bounded above by some (sufficiently large) multiple Cg of g:

$$\exists C > 0. \ \exists N. \ \forall n \geq N. \ f(n) \leq Cg(n)$$

Write as f is O(g), and call g an asymptotic upper bound for f.

Suppose
$$f(n) = 3n + \sqrt{n}$$
 and $g(n) = n$.

Suppose $f(n) = 3n + \sqrt{n}$ and g(n) = n.

Claim: f is O(g). Or more simply, f is O(n).

Suppose $f(n) = 3n + \sqrt{n}$ and g(n) = n.

Claim: f is O(g). Or more simply, f is O(n).

Proof: Need to show

$$\exists C. \ \exists N. \ \forall n \geq N. \ 3n + \sqrt{n} \leq Cn$$

Suppose $f(n) = 3n + \sqrt{n}$ and g(n) = n.

Claim: f is O(g). Or more simply, f is O(n).

Proof: Need to show

$$\exists C. \ \exists N. \ \forall n \geq N. \ 3n + \sqrt{n} \leq Cn$$

Take
$$C = 4$$
, $N = 1$.

Suppose $f(n) = 3n + \sqrt{n}$ and g(n) = n.

Claim: f is O(g). Or more simply, f is O(n).

Proof: Need to show

$$\exists C. \ \exists N. \ \forall n \geq N. \ 3n + \sqrt{n} \leq Cn$$

Take
$$C = 4$$
, $N = 1$.

Then for all $n \ge N = 1$, we have $\sqrt{n} \le n$, so

$$3n + \sqrt{n} \leq 4n = Cn$$

Suppose $f(n) = 3n + \sqrt{n}$ and g(n) = n.

Claim: f is O(g). Or more simply, f is O(n).

Proof: Need to show

$$\exists C. \ \exists N. \ \forall n \geq N. \ 3n + \sqrt{n} \leq Cn$$

Take
$$C = 4$$
, $N = 1$.

Then for all $n \ge N = 1$, we have $\sqrt{n} \le n$, so

$$3n + \sqrt{n} \le 4n = Cn$$

Intuition: 3n is the 'dominant' term; \sqrt{n} is 'small change'.

We've defined:

```
f 	ext{ is } o(g) 	ext{ means } \forall c > 0. \ \exists N. \ \forall n \geq N. \ f(n) < cg(n)
f 	ext{ is } O(g) 	ext{ means } \exists C > 0. \ \exists N. \ \forall n \geq N. \ f(n) \leq Cg(n)
```

We've defined:

```
f 	ext{ is } o(g) 	ext{ means } \forall c > 0. \ \exists N. \ \forall n \geq N. \ f(n) < cg(n)
f 	ext{ is } O(g) 	ext{ means } \exists C > 0. \ \exists N. \ \forall n \geq N. \ f(n) \leq Cg(n)
```

- For o we require that any multiple of g eventually overtakes f.
- For O it's enough that *some* multiple of g does.

We've defined:

```
f 	ext{ is } o(g) 	ext{ means } \forall c > 0. \ \exists N. \ \forall n \geq N. \ f(n) < cg(n)
f 	ext{ is } O(g) 	ext{ means } \exists C > 0. \ \exists N. \ \forall n \geq N. \ f(n) \leq Cg(n)
```

- \triangleright For o we require that any multiple of g eventually overtakes f.
- For O it's enough that *some* multiple of g does.

```
So f = o(g) implies f = O(g).
But not conversely: e.g. f = O(f) for any f, but f is never o(f).
```

We've defined:

```
f 	ext{ is } o(g) 	ext{ means } \forall c > 0. \ \exists N. \ \forall n \geq N. \ f(n) < cg(n)
f 	ext{ is } O(g) 	ext{ means } \exists C > 0. \ \exists N. \ \forall n \geq N. \ f(n) \leq Cg(n)
```

- For o we require that any multiple of g eventually overtakes f.
- For O it's enough that *some* multiple of g does.

```
So f = o(g) implies f = O(g).
```

But not conversely: e.g. f = O(f) for any f, but f is never o(f).

Loosely, can think of o as like <, O as like \le .

We've defined:

```
f 	ext{ is } o(g) 	ext{ means } \forall c > 0. \ \exists N. \ \forall n \geq N. \ f(n) < cg(n)
f 	ext{ is } O(g) 	ext{ means } \exists C > 0. \ \exists N. \ \forall n \geq N. \ f(n) \leq Cg(n)
```

- For o we require that any multiple of g eventually overtakes f.
- For O it's enough that *some* multiple of g does.

So f = o(g) implies f = O(g).

But not conversely: e.g. f = O(f) for any f, but f is never o(f).

Loosely, can think of o as like <, O as like \le .

Notation: Again, O(g) is officially a set:

$$O(g) = \{f \mid \exists C \geq 0. \exists N. \forall n \geq N. f(n) \leq Cg(n)\}$$

But common to write e.g. f = O(g) for $f \in O(g)$.

Example 1: Let f(n) = (5n + 4)(7n + 100). Is $f = O(n^2)$?

Example 1: Let f(n) = (5n + 4)(7n + 100). Is $f = O(n^2)$? **YES!**

Example 1: Let f(n) = (5n + 4)(7n + 100). Is $f = O(n^2)$? **YES!**

Example 1: Let
$$f(n) = (5n + 4)(7n + 100)$$
. Is $f = O(n^2)$? **YES!**

Informal justification: The dominant term is $35n^2$; the rest is small change that is clearly $o(n^2)$. So f is $O(n^2)$.

Example 1: Let
$$f(n) = (5n + 4)(7n + 100)$$
. Is $f = O(n^2)$? **YES!**

Informal justification: The dominant term is $35n^2$; the rest is small change that is clearly $o(n^2)$. So f is $O(n^2)$.

Rigorous justification: Want to show:

$$\exists C. \ \exists N. \ \forall n \geq N. \ (5n+4)(7n+100) \leq Cn^2$$

Example 1: Let
$$f(n) = (5n + 4)(7n + 100)$$
. Is $f = O(n^2)$? **YES!**

Informal justification: The dominant term is $35n^2$; the rest is small change that is clearly $o(n^2)$. So f is $O(n^2)$.

Rigorous justification: Want to show:

$$\exists C. \ \exists N. \ \forall n \geq N. \ (5n+4)(7n+100) \leq Cn^2$$

Note that

- ▶ 5n + 4 < 6n once n > 4
- ▶ $7n + 100 \le 8n$ once $n \ge 100$.

Example 1: Let
$$f(n) = (5n + 4)(7n + 100)$$
. Is $f = O(n^2)$? **YES!**

Informal justification: The dominant term is $35n^2$; the rest is small change that is clearly $o(n^2)$. So f is $O(n^2)$.

Rigorous justification: Want to show:

$$\exists C. \ \exists N. \ \forall n \geq N. \ (5n+4)(7n+100) \leq Cn^2$$

Note that

- ▶ 5n + 4 < 6n once n > 4
- ▶ $7n + 100 \le 8n$ once $n \ge 100$.

So for all $n \ge 100$, we have $f(n) \le 48n^2$.

In other words, C = 48, N = 100 will work.

We wanted to show

$$\exists C. \ \exists N. \ \forall n \geq N. \ (5n+4)(7n+100) \leq Cn^2$$

We did this by picking C = 48, N = 100.

We wanted to show

$$\exists C. \ \exists N. \ \forall n \geq N. \ (5n+4)(7n+100) \leq Cn^2$$

We did this by picking C = 48, N = 100.

There's some freedom of choice here.

By picking a larger C, can often get away with a smaller N.

We wanted to show

$$\exists C. \ \exists N. \ \forall n \geq N. \ (5n+4)(7n+100) \leq Cn^2$$

We did this by picking C = 48, N = 100.

There's some freedom of choice here.

By picking a larger C, can often get away with a smaller N.

E.g. once $n \ge 4$, have $5n + 4 \le 6n$ and $7n + 100 \le 32n$.

So could equally well take $C = 6 \times 32 = 192$, N = 4.

We wanted to show

$$\exists C. \ \exists N. \ \forall n \geq N. \ (5n+4)(7n+100) \leq Cn^2$$

We did this by picking C = 48, N = 100.

There's some freedom of choice here.

By picking a larger C, can often get away with a smaller N.

E.g. once $n \ge 4$, have $5n + 4 \le 6n$ and $7n + 100 \le 32n$.

So could equally well take $C = 6 \times 32 = 192$, N = 4.

Advice: Make life easy for yourself!

More examples

Example 2: Let f(n) = (5n + 4)(7n + 100). Is $f = O(n^3)$?

More examples

Example 2: Let f(n) = (5n + 4)(7n + 100). Is $f = O(n^3)$? **YES!**

Example 2: Let
$$f(n) = (5n + 4)(7n + 100)$$
. Is $f = O(n^3)$? **YES!**

We've already shown

$$\forall n \geq 100. f(n) \leq 48n^2$$

So certainly

$$\forall n \geq 100. \, f(n) \leq 48n^3$$

Example 2: Let
$$f(n) = (5n + 4)(7n + 100)$$
. Is $f = O(n^3)$? **YES!**

We've already shown

$$\forall n \geq 100. f(n) \leq 48n^2$$

So certainly

$$\forall n \geq 100. \, f(n) \leq 48n^3$$

Here we say $O(n^3)$ is an asymptotic upper bound for f, though not a tight upper bound.

Example 2: Let
$$f(n) = (5n + 4)(7n + 100)$$
. Is $f = O(n^3)$? **YES!**

We've already shown

$$\forall n \geq 100. \, f(n) \leq 48n^2$$

So certainly

$$\forall n \geq 100. \, f(n) \leq 48n^3$$

Here we say $O(n^3)$ is an asymptotic upper bound for f, though not a tight upper bound.

We'd write $f = \Theta(n^3)$ to mean n^3 was an asymptotic upper and lower bound (hence tight). Not true here!

Example 2: Let
$$f(n) = (5n + 4)(7n + 100)$$
. Is $f = O(n^3)$? **YES!**

We've already shown

$$\forall n \geq 100. \, f(n) \leq 48n^2$$

So certainly

$$\forall n \geq 100. \, f(n) \leq 48n^3$$

Here we say $O(n^3)$ is an asymptotic upper bound for f, though not a tight upper bound.

We'd write $f = \Theta(n^3)$ to mean n^3 was an asymptotic upper and lower bound (hence tight). Not true here!

Some authors are less precise in distinguishing O and Θ (see CLRS, end of Chapter 3). But if Θ applies, it's fine only to mention O (or Ω) if that's the important bit.

Example 3: Is $2^{2n} = O(2^n)$?

Example 3: Is $2^{2n} = O(2^n)$? **NO!**

Example 3: Is $2^{2n} = O(2^n)$? **NO!**

Informal justification: The ratio $2^{2n}/2^n$ is 2^n , which tends to ∞ and so will eventually exceed any given constant C. In fact, $2^{2n} = \omega(2^n)$.

Example 3: Is $2^{2n} = O(2^n)$? **NO!**

Informal justification: The ratio $2^{2n}/2^n$ is 2^n , which tends to ∞ and so will eventually exceed any given constant C. In fact, $2^{2n} = \omega(2^n)$.

Rigorous justification: Want to show:

$$\neg (\exists C > 0. \ \exists N. \ \forall n \geq N. \ 2^{2n} \leq C.2^n)$$

in other words

$$\forall C > 0. \ \forall N. \ \exists n \geq N. \ 2^{2n} > C.2^n$$

Example 3: Is $2^{2n} = O(2^n)$? **NO!**

Informal justification: The ratio $2^{2n}/2^n$ is 2^n , which tends to ∞ and so will eventually exceed any given constant C. In fact, $2^{2n} = \omega(2^n)$.

Rigorous justification: Want to show:

$$\neg (\exists C > 0. \exists N. \forall n \geq N. 2^{2n} \leq C.2^n)$$

in other words

$$\forall C > 0. \ \forall N. \ \exists n \geq N. \ 2^{2n} > C.2^n$$

Given any C > 0 and N, take any $n > \max(N, \lg C)$. Then $2^n > C$, so $2^{2n} > C \cdot 2^n$.

Example 3: Is
$$2^{2n} = O(2^n)$$
? **NO!**

Informal justification: The ratio $2^{2n}/2^n$ is 2^n , which tends to ∞ and so will eventually exceed any given constant C. In fact, $2^{2n} = \omega(2^n)$.

Rigorous justification: Want to show:

$$\neg (\exists C > 0. \ \exists N. \ \forall n \geq N. \ 2^{2n} \leq C.2^n)$$

in other words

$$\forall C > 0. \ \forall N. \ \exists n \geq N. \ 2^{2n} > C.2^n$$

Given any C > 0 and N, take any $n > \max(N, \lg C)$. Then $2^n > C$, so $2^{2n} > C \cdot 2^n$.

Moral: Do 'constant factors' matter? Depends where they occur!

Big O: final example

Example 4: Is $\lg(n^7) = O(\lg n)$?

Big O: final example

Example 4: Is
$$\lg(n^7) = O(\lg n)$$
? **YES!**

Big O: final example

Example 4: Is
$$\lg(n^7) = O(\lg n)$$
? **YES!** Note that $\lg(n^7) = 7 \lg n$. So $C = 7$, $N = 1$ will do.

Big Ω

 Ω is dual to O. Read f is $\Omega(g)$ as: 'f grows no slower than g', or 'g is an asymptotic lower bound for f'.

Big Ω

 Ω is dual to O. Read f is $\Omega(g)$ as: 'f grows no slower than g', or 'g is an asymptotic lower bound for f'.

E.g. for some runtime function T(n):

- ightharpoonup T(n) = O(g) says runtime is not essentially worse than g(n),
- $ightharpoonup T(n) = \Omega(g)$ says runtime is not essentially better than g(n).

Big Ω

 Ω is dual to O. Read f is $\Omega(g)$ as: 'f grows no slower than g', or 'g is an asymptotic lower bound for f'.

E.g. for some runtime function T(n):

- ightharpoonup T(n) = O(g) says runtime is not essentially worse than g(n),
- $ightharpoonup T(n) = \Omega(g)$ says runtime is not essentially better than g(n).

 $f=\Omega(g)$ says f is eventually bounded below by some (sufficiently small) multiple cg of g:

$$\exists c > 0. \ \exists N. \ \forall n \geq N. \ cg(n) \leq f(n)$$

Big Ω

 Ω is dual to O. Read f is $\Omega(g)$ as: 'f grows no slower than g', or 'g is an asymptotic lower bound for f'.

E.g. for some runtime function T(n):

- ightharpoonup T(n) = O(g) says runtime is not essentially worse than g(n),
- $ightharpoonup T(n) = \Omega(g)$ says runtime is not essentially better than g(n).

 $f = \Omega(g)$ says f is eventually bounded below by some (sufficiently small) multiple cg of g:

$$\exists c > 0. \ \exists N. \ \forall n \geq N. \ cg(n) \leq f(n)$$

Not hard to show $f = \Omega(g) \iff g = O(f)$.

Is it true that $n - \sqrt{n}$ is $\Omega(n)$?

Is it true that $n - \sqrt{n}$ is $\Omega(n)$? **YES!**

Is it true that $n - \sqrt{n}$ is $\Omega(n)$? YES!

Informal justification: \sqrt{n} becomes negligible relative to n when n is large. So growth rate of $n-\sqrt{n}$ is essentially that of n.

Is it true that $n - \sqrt{n}$ is $\Omega(n)$? **YES!**

Informal justification: \sqrt{n} becomes negligible relative to n when n is large. So growth rate of $n-\sqrt{n}$ is essentially that of n.

Rigorous justification: Want to show:

$$\exists c. \ \exists N. \ \forall n \geq N. \ cn \leq n - \sqrt{n}$$

Is it true that $n - \sqrt{n}$ is $\Omega(n)$? **YES!**

Informal justification: \sqrt{n} becomes negligible relative to n when n is large. So growth rate of $n - \sqrt{n}$ is essentially that of n.

Rigorous justification: Want to show:

$$\exists c. \ \exists N. \ \forall n \geq N. \ cn \leq n - \sqrt{n}$$

Take
$$c = 1/2$$
, $N = 4$.

Then for all $n \ge N = 4$, we have $\sqrt{n} \le n/2$, so

$$n-\sqrt{n} \geq n-n/2 = n/2 = cn$$

Big Θ

Can now capture the idea that f and g have 'essentially the same growth rate'.

Big Θ

Can now capture the idea that f and g have 'essentially the same growth rate'.

Say f is $\Theta(g)$ (or g is an asymptotically tight bound for f) if both $f \in O(g)$ and $f \in \Omega(g)$.

Big ⊖

Can now capture the idea that f and g have 'essentially the same growth rate'.

Say f is $\Theta(g)$ (or g is an asymptotically tight bound for f) if both $f \in O(g)$ and $f \in \Omega(g)$.

Equivalently, $f \in \Theta(g)$ if and only if

$$\exists c_1, c_2 > 0. \ \exists N. \ \forall n \geq N. \ c_1 g(n) \leq f(n) \leq c_2 g(n)$$

Big Θ

Can now capture the idea that f and g have 'essentially the same growth rate'.

Say f is $\Theta(g)$ (or g is an asymptotically tight bound for f) if both $f \in O(g)$ and $f \in \Omega(g)$.

Equivalently, $f \in \Theta(g)$ if and only if

$$\exists c_1, c_2 > 0. \ \exists N. \ \forall n \geq N. \ c_1 g(n) \leq f(n) \leq c_2 g(n)$$

Note also that $f = \Theta(g) \iff g = \Theta(f)$.

For each of the following functions f, identify some 'simple' g such that $f = \Theta(g)$.

For each of the following functions f, identify some 'simple' g such that $f = \Theta(g)$.

Example 1: $f(n) = 3n^2 - 2n + 19$.

For each of the following functions f, identify some 'simple' g such that $f = \Theta(g)$.

Example 1:
$$f(n) = 3n^2 - 2n + 19$$
. Answer: $f(n) = \Theta(n^2)$. The dominant term is $3n^2$, the rest is small change. So $f(n)$ will eventually be sandwiched between $2n^2$ and $4n^2$. (Specifically, can take e.g. $c_1 = 2$, $c_2 = 4$, $N = 5$.)

For each of the following functions f, identify some 'simple' g such that $f = \Theta(g)$.

Example 1:
$$f(n) = 3n^2 - 2n + 19$$
. Answer: $f(n) = \Theta(n^2)$.

The dominant term is $3n^2$, the rest is small change.

So f(n) will eventually be sandwiched between $2n^2$ and $4n^2$.

(Specifically, can take e.g. $c_1 = 2$, $c_2 = 4$, N = 5.)

Example 2: f(n) = 5 - 4/n.

For each of the following functions f, identify some 'simple' g such that $f = \Theta(g)$.

Example 1:
$$f(n) = 3n^2 - 2n + 19$$
. Answer: $f(n) = \Theta(n^2)$.

The dominant term is $3n^2$, the rest is small change. So f(n) will eventually be sandwiched between $2n^2$ and $4n^2$. (Specifically, can take e.g. $c_1 = 2$, $c_2 = 4$, N = 5.)

Example 2:
$$f(n) = 5 - 4/n$$
. Answer: $f(n) = \Theta(1)$.

That is, we're taking our 'g' to be the constant function g(n) = 1. Then for any $n \ge 1$, we have

$$1.g(n) = 1 \le 5 - 4/n \le 5 = 5.g(n)$$

So taking $c_1 = 1$, $c_2 = 5$, N = 1 will work.

Identify some simple g such that $f = \Theta(g)$.

Example 3:
$$f(n) = \sum_{i=1}^{n} 1/i$$
.
E.g. $f(4) = 1 + 1/2 + 1/3 + 1/4 = 2\frac{1}{12}$.

Identify some simple g such that $f = \Theta(g)$.

Example 3:
$$f(n) = \sum_{i=1}^{n} 1/i$$
.

E.g.
$$f(4) = 1 + 1/2 + 1/3 + 1/4 = 2\frac{1}{12}$$
.

Answer:
$$f(n) = \Theta(\ln n)$$
.

[Moral: Can often use Θ -estimates when stuff is hard to compute exactly.]

Identify some simple g such that $f = \Theta(g)$.

Example 3: $f(n) = \sum_{i=1}^{n} 1/i$.

E.g. $f(4) = 1 + 1/2 + 1/3 + 1/4 = 2\frac{1}{12}$.

Answer: $f(n) = \Theta(\ln n)$.

[Moral: Can often use Θ -estimates when stuff is hard to compute exactly.]

Idea: f(n) is close to $\int_{1}^{n} (1/x) dx$, which is $\ln n$.

E.g. for n = 4:

Identify some simple g such that $f = \Theta(g)$.

Example 3:
$$f(n) = \sum_{i=1}^{n} 1/i$$
.

E.g.
$$f(4) = 1 + 1/2 + 1/3 + 1/4 = 2\frac{1}{12}$$
.

Answer: $f(n) = \Theta(\ln n)$.

[Moral: Can often use Θ -estimates when stuff is hard to compute exactly.]

Idea: f(n) is close to $\int_{1}^{n} (1/x) dx$, which is $\ln n$.

E.g. for n = 4:

Actually, $\Theta(\ln n)$ is same as $\Theta(\lg n)$: see Tutorial Sheet 1.

IADS Lecture 4 Slide 16

Let's return to an earlier question. Suppose each implementation J of (say) **MergeSort** yields some runtime function T_J .

Question: What do we expect all these T_J to have in common?

Let's return to an earlier question. Suppose each implementation J of (say) **MergeSort** yields some runtime function T_J .

Question: What do we expect all these T_J to have in common?

Answer: Same growth rate!

 $\forall J, J'$ implementing MergeSort. $T_J = \Theta(T_{J'})$

Let's return to an earlier question. Suppose each implementation J of (say) **MergeSort** yields some runtime function T_J .

Question: What do we expect all these T_J to have in common?

Answer: Same growth rate!

 $\forall J, J' \text{ implementing MergeSort. } T_J = \Theta(T_{J'})$

Will justify this next time, and furthermore see that

 $\forall J$ implementing MergeSort. $T_J = \Theta(n \lg n)$

Let's return to an earlier question. Suppose each implementation J of (say) **MergeSort** yields some runtime function T_J .

Question: What do we expect all these T_J to have in common?

Answer: Same growth rate!

$$\forall J, J'$$
 implementing MergeSort. $T_J = \Theta(T_{J'})$

Will justify this next time, and furthermore see that

$$\forall J$$
 implementing MergeSort. $T_J = \Theta(n \lg n)$

Idea: Asymptotic notation can crisply express essential properties of algorithms, abstracting away from implementation detail.

Let's return to an earlier question. Suppose each implementation J of (say) **MergeSort** yields some runtime function T_J .

Question: What do we expect all these T_J to have in common?

Answer: Same growth rate!

$$\forall J, J'$$
 implementing MergeSort. $T_J = \Theta(T_{J'})$

Will justify this next time, and furthermore see that

$$\forall J$$
 implementing MergeSort. $T_J = \Theta(n \lg n)$

Idea: Asymptotic notation can crisply express essential properties of algorithms, abstracting away from implementation detail.

Of the Gang of Five, we'll meet O and Θ most often.

Some common growth rates

Certain (types of) growth rates crop up frequently, and have names in common use.

- $ightharpoonup \Theta(1)$: (within) constant time
- $ightharpoonup \Theta(\lg n)$: logarithmic time
- \triangleright $\Theta(n)$: linear time
- \triangleright $\Theta(n \lg n)$: log-linear time
- \triangleright $\Theta(n^2)$: quadratic time
- $ightharpoonup \Theta(n^k)$ for some exponent k: polynomial time
- $ightharpoonup \Theta(b^n)$ for some base b: exponential time

Reading (same as for Lecture 3): Roughgarden Chapter 2 Kleinberg/Tardos Chapter 2, especially 2.2, 2.4 CLRS Chapter 3 (covers whole Gang of Five) GGT Sections 3.3, 3.4.