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These lecture notes are expanded versions of the lecture slides with a little
more text added, similar to the oral explanation given in lectures. Not all of
the images from the lecture slides are reproduced here, but some of the maths
is worked through in a bit more detail.

What are algorithms and data structures?

What do we mean by an algorithm? Broadly, it is something like a method or
recipe that can be followed for performing some computational task. And a little
bit like a cooking recipe, an algorithm will typically consists of a sequence of
instructions or steps to go through in order to perform that task: for example,
the method for long multiplication that you learned at school would be an
example of an algorithm for multiplying large numbers written in decimal. So
before we sit down to write a program to solve some problem, we first need
to know broadly what method we're going to follow: in other words, what
algorithm we’re going to use. So having a good grasp of algorithms for common
tasks is one part of what we need to be good programmers.

What about data structures? Most of the things people want to do with
computers involve working with data of some kind — whether that’s a list of
names and addresses, or a street map of Edinburgh. And a data structure
is basically a way of storing, or representing, or structuring data so that it’s
easy to perform the operations we want to perform on that data. (Well see
some examples below). So once again, before we sit down to write our program
that works with some kind of data, we’ll need to give some thought to how
the relevant data should be stored and structured so that the program works
as efficiently as possible. So a good knowledge of data structures is another
important part of a good programmer.

In fact, it turns out that algorithms and data structures are very closely
intertwined, which is why it makes sense to study them together.

Some tasks calling for algorithms

To give a bit more of a flavour for what algorithms are about, let’s look at some
practical examples of computational tasks that call for some efficient method
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or algorithm. (You might like to think a bit about how you might go about
performing these various tasks.) Not all of these are ezactly the problems we’ll
be addressing in this course, but they give the general flavour of the territory
we’ll be exploring.

Sorting a list of length 1000000000. A very common task is that of sorting
a long list of items into some fixed order, such as alphabetical order or
numerical order. This is naturally what we want to do if we want to create
a database with records for a billion people, for example.

Crawling the Web. Suppose we’re building a search engine for the World
Wide Web. As part of that, we’ll want a web crawler that goes looking
for pages that can be reached from already known pages by repeatedly
following links. To keep it simple, let’s suppose that we give the crawler a
single starting page, and we want it to find all the pages that are reachable
from that page in any number of steps. We want to ensure that our web
crawler doesn’t get stuck going round and round in a loop, but also that
it does eventually discover every page that’s reachable.

Finding shortest/fastest/cheapest routes. Suppose we have a street map
of Edinburgh, and we want to know the fastest route from A to B (this
is what a SatNav tries to work out for you). What would be an efficient
way of finding that?

Finding common substrings. Suppose we’re given two strings of characters,
e.g.

’working logarithmically’ ’algorithmically speaking’

By a substring of one of these strings, we mean some consecutive sequence
of characters within it. It’s easy to see that the above strings have a
number of substrings in common, e.g. >or’ and ’king’ — but it’s clear
that the longest common substring in this case is *ithmically’. Finding
this longest common substring might seem like an easy problem in this
case — but how would you do this efficiently if both your strings were
around 1000000 characters long?

Algorithms for this and related problems have a number of applications.
One application concerns plagiarism detection: if two students both sub-
mit a piece of coursework, there are algorithms one can use to test whether
they share large portions in common. More interestingly, perhaps, such al-
gorithms are used in genetics to detect shared segments within long DNA
sequences.

Primality testing. If I gave you a large number n, how would you tell if it
was a prime number or not? If n were just a six-digit number, it would
be feasible to do this by testing whether n had any factors up to /n.
But what if n were a 100-digit number? That might sound like a purely
recreational mathematical problem, but it turns out (as you may learn in
the DMP course) that the ability to identify prime numbers is actually
of fundamental practical importance for modern computer security and

cryptography.
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In summary, all of these are problems of practical importance that call for
an efficient method for solving them — and in each case, there’s something
interesting to say about the kinds of algorithms one might use. For some of
these problems, you might well be able to think straightaway of an ’obvious’
method that would do the job. However, it often turns out that...

With a bit of cleverness, we can come up with an algorithm that’s
dramatically more efficient than the obvious one.

That’s really the motto for the whole of this course, and indeed for the
whole subject of Algorithms and Data Structures: the idea that with some
careful thought, we can often find algorithms that improve spectacularly on the
obvious one and can be used on much larger examples.

What do we mean by efficient here? There are various kinds of efficiency
we might be interested in. Most obviously, we’ll be talking about ...

e Time-efficiency: finding a method that works as quickly as possible.
e Space-efficiency: find a method that requires as little memory as possible.

In practice, we’re often interested in both of these — although which matters
most may depend on what we're trying to do. We’ll be considering both of them
in this course, though Time will get rather more time/space than Space does.
(One could also apply similar ideas to reason about other kinds of efficiency,
e.g. minimizing energy consumption or number of disk accesses.)

Problems, algorithms, programs

There can be many different algorithms for solving the same problem. For ex-
ample, if the problem is to sort a long list of numbers into increasing order, there
are many algorithms that we might consider, including relatively ‘obvious’ algo-
rithms like INSERTSORT and BUBBLESORT, and less obvious but generally more
efficient ones like MERGESORT, QUICKSORT and HEAPSORT. (All five of these
algorithms will feature in this course.)

Also, there can be many different programs that implement the same algo-
rithm. An algorithm is not the same as a specific program in a specific language:
rather, the algorithm is something like the general method that a program might
useE| For instance, if both you and I sit down to write a Java program that im-
plements MERGESORT, it’s highly unlikely that we’ll produce exactly the same
code — although anyone who understands the MERGESORT algorithm will rec-
ognize that both your program and mine are following this basic method. Al-
ternatively, you could write a MERGESORT program in Python, or any other
language you like. Indeed, for the purpose of this course, it’s fair to say that
any reasonable algorithm can be implemented in any reasonable programming
language — although it might be that some languages are a bit better suited to
certain algorithms than others.

180 it’s fair to admit that the concept of an algorithm is actually a slightly fuzzy one —
we don’t have a crisp mathematical definition of precisely what an algorithm is, or when two
algorithms are ‘the same’. But you’ll soon get used to the way the term is used.
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There were algorithms before there were computers

Obviously, in this course we're obviously most interested in doing things with
computers. But if an algorithm is basically just a method or recipe for solving
some problem, then algorithms are in principle just as relevant to hand calcula-
tion as they are to computer calculation. Indeed, in the days before computers,
people were just as motivated to find efficient ways of calculating things as we
are today — if not more so. In fact, the very word algorithm comes from the
name of the 9th century Persian mathematician al-Khwarizmi, who wrote a
very influential textbook on doing arithmetic in decimal notation — including
methods for addition, subtraction, long multiplication, long division and square-
rooting that are close to the ones you learned in school. And even earlier — in
classical Greek times, before they were called ‘algorithms’ — some important
examples of algorithms were known. A good example is Euclid’s algorithm for
computing the Greatest Common Divisor (GCD) of two numbers (also known
as their Highest Common Factor). And even though this is more than 2000
years old, this is still a classic and beautiful example of a simple, clean and ex-
tremely efficient algorithm.We can represent Euclid’s algorithm very concisely
in a ‘recursive’ style:

GCD(m,n): # (where m > n)
r=m mod n
if r == 0 then return n
else return GCD(n, r)

For example, to compute GCD(4851,840), we first compute 4851 mod 840 =
651. Since this is not zero, our problem reduces to computing GCD(840,651).
For this, we do the same again: 840 mod 651 = 189, so the problem reduces
to GCD(651,189). Repeating the process, we get down to GCD(189,84), then
GCD(84,21). And at this point, we find that 84 mod 21 = 0, so we return 21 as
our final answer. It turns out that this method continues to work very efficiently
even for numbers of a few thousand digits, and even today it’s essentially the
best method we know for numbers of this magnitude[’]

So, there were algorithms before there were computers. But now that we
have computers, algorithms are absolutely everywhere! Indeed, it’s hard to think
of any branch of computer science, or any major application of computing, that
doesn’t involve algorithms. For this reason, the whole topic of Algorithms and
Data is seen as an absolutely core part of Computer Science and Informatics,
and any CS degree programme at any university in the world will typically
feature a course broadly similar to (if not quite as cool as) this one.

A first taste of data structures

Now let’s look at some examples to give the flavour of data structures. As a
simple problem to consider, let’s think about how we might store a finite set
of whole numbers (something like {5,23,3,14,2}) in a computer’s memory. We
are interested in being able to perform the following ‘set operations’ efficiently:

2When I was at school, they taught me that the way to compute the GCD of m and n
was to factorize both numbers and then see what prime factors they had in common. That’s
actually not a good approach at all for very large numbers (e.g. 1000 digits each), because
factorization is itself a notoriously hard problem. Euclid’s method is far superior!
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e Looking up whether a given number (e.g. 11) is a member of our set.
e Inserting a new number into the set.
e Deleting an existing member of the set.

The following picture informally shows four possible ways of representing
our set {5,23,3,14,2} in memory:
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Here we’ll just try to give the general flavour of these representations, leaving
the details to later in the course.

First, on the left, I've illustrated two ways of storing our set using an array.
In both cases, I've chosen an array with 7 cells, indexed by the numbers 0.. . . ,6,
and used the first 5 of these cells to store the members of our set: the idea
is just that I've included two spare cells in case we want to insert some new
members. (We’ll also want to keep a record somewhere of which array elements
are currently in use, but let’s not worry about that for now.) The difference
between these two array representations is that one of them is sorted — we’ve
carefully arranged the numbers in increasing order — while in the other, we’ve
allowed the numbers to appear in any order they likeﬂ

What practical difference does it make whether our array is sorted or not?
Let’s think about each of our set operations in turn:

e Looking up whether a number n is a member of a set will be much easier
for a sorted array, in just the same way that in an old-fashioned dictionary,
looking up a specific English word (such as skulduggery) is made easier
by the fact that the words are arranged alphabetically. For an unsorted
array, we would have no choice but to examine each array entry in turn
until we either found our n or reached the end.

e On the other hand, inserting a new number is easier if we don’t care about
sorting: we can just stick the new number in the next available array cell
(cell 5 in this case). If our array was sorted and we wanted to keep it
sorted, we’d have to locate the correct position for the new entry, then
shuffle any larger numbers one place to the right to make room for it.
There is also a further concern that applies to both array representations:
what happens if the array is already full and we want to insert a new
number? We could perhaps move to a bigger array at this point, but that
would take some real work.

3Remember that a set is just a collection of elements without any ordering imposed on
them, so e.g. {5,23,3,14,2} and {23,14,2,3,5} are just two ways of writing the very same
set. This is the difference between sets and lists: the lists [5,23,3,14,2] and [23, 14,2, 3, 5]
are definitely different.
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e What about deleting a member of this set? If the array is sorted, it will
be easier to locate the element we want to delete — but even so, things
are not great, as we may need to shuffle some other elements to the left
so that we’re not left with a gap.

Later in the course, we will see how to quantify such efficiency differences
more precisely. For now, we can just now that whether a sorted or unsorted
array is better might depend on whether we care more about the efficiency of
lookup or of insertion.

In the middle of the picture, I've shown a different kind of representation
using a linked list. Here the idea is to use a bunch of cells that can live anywhere
in the computer’s memory they like. Each cell has two halves: the first half
contains one of the members of our set, while the second half contains a reference
(or pointer) to the memory address where the ‘next’ cell is to be found — or else
a special marker to signal that we’re at the end of the list. Given a reference to
the first cell in the list, we’re then able to search through the list by ‘chasing
pointers’ from one cell to the next, and this gives us a way to see whether a
number n is present. Linked lists are the usual way of representing lists in
memory in functional languages like Haskell.

How efficient would the various set operations be using this linked list rep-
resentation. Of course, lookup will be no better than for unsorted lists — we’ll
still have to search through the entire list if our given number n isn’t present.
But insertion can be done very efficiently — we can just create a new cell con-
taining the new number, and make this cell point to the start of the old list —
and in this case, we don’t need to worry about the problem of array overflow,
as we can just keep adding new cells until the available memory fills up. Linked
lists also have other advantages, as we’ll see later in the course. But if we're
wanting to do a lot of lookup operations on our sets, they’re not a great choiceﬁ

So of the three data structures we’ve looked at so far, some are good for
lookup and some for insertion — but none of them are good for all three of
the set operations we care about. And this raises a natural question: Can we
find a data structure for representing sets of numbers that gives us fast ways of
doing all three operations: lookup, insertion and deletion? As we’ll see around
Lecture 9, there is indeed a way of achieving this, though it’s far from obvious.

To give just a hint of the idea at this stage, at the right of our picture I've
shown a representation of our set by an ordered tree. This consists of a bunch
of nodes which each store a member of our set, and which are each equipped
with references to at most two child nodes. (There are also null references that
don’t point to another node.) So, for example, at the top of the tree we have
node carrying the number 5, equipped with pointers to two ‘subtrees’. And the
thing to note is that all the numbers appearing in the left subtree are less than
5, and all those in the right subtree are greater than 5. Likewise, if we look
at the nodes carrying 2 or 23, we see that if there are any numbers in the left
subtree, they will be less than the number on the node, and if there are any
numbers in the right subtree, they will be greater. One can imagine that, as
long as the tree doesn’t have too many levels, this property will make it easy
to lookup a number, in much the same way as we do with a sorted array. One
can also perhaps imagine that inserting a new number won’t be too much work

4Question to ponder: If we worked with sorted linked lists, what difference would that
make to the efficiency of lookup and insertion?
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either, as we can just add a new node with appropriate pointers, and don’t need
to do the kind of shuffling that’s necessary for sorted arrays. It turns out that,
with some further ingredients, one can make this idea fly and obtain a data
structure for sets of numbers which supports good implementations of all three
set operations (in a sense we’ll be able to make precise).

Algorithms as a technology

In this lecture we’ve said a bit about algorithms and a bit about data structures,
but let’s conclude by putting all of this in a wider context.

What kinds of things make computers perform tasks faster? One can think
of several answers to this: progress in hardware design allowing faster clock
speeds; use of parallel processing; improvements to compilers and the optimiza-
tion techniques they use, etc. But just as significant as any of these are advances
in the area of algorithms and data structures. If you can devise a more efficient
algorithm for some task, or a more efficient data structure to use, this will of-
ten have a dramatic impact on performance. And indeed, even on some quite
old algorithmic problems that have been around for several decades now, new
advances are still being madeﬂ And this sometimes leads to dramatic improve-
ments on real practical tasks. So in this sense, we can say that algorithms
and data structures are a technology, no less than the other things we’ve men-
tioned. Certainly people like Google care a lot about them: it’s quite common
for Google to ask questions about algorithms and data structures at internship
interviews. So there are plenty of reasons why the material in this course is
relevant to computing in what some people like to call ‘the real world’.

[The lecture concluded with a slide on how the course material will be struc-
tured, and one on suggested reading materials. We won’t duplicate this infor-
mation here.]

5Even for a problem as basic as sorting a list, it seems there’s still more to say. For many
years, the default sorting algorithm used by Python was one known as TIMSORT (modestly
so named by its inventor Tim Peters), but in 2022 this was replaced by a refined version
called POWERSORT. (Both TIMSORT and POWERSORT are based on the idea of MERGESORT,
which we’ll consider in Lecture 2.) The idea of POWERSORT draws on old algorithmic work
by Mehlhorn on binary search trees (1977), which was not widely known until recently.



