Informatics 2 — Introduction to Algorithms

1.

(a)

and Data Structures
Tutorial 2: Analysis of Algorithms
SOLUTIONS

Give an asymptotic upper bound for the number of arithmetic operations required
to compute ProbablePrime(n) using Algorithm B for Expmod.

When computing Expmod (a,n,m), each time round the for-loop we do 3 arith-
metic operations (including the increment for i), so we do ©(n) operations overall.
Computing ProbablePrime(n) requires this plus one subtraction: still ©(n).

Do the same for Algorithm C.

O(lgn) arithmetic operations. Informally, this is because the computation of
Expmod (a,n,m) recurses to depth lgn (give or take), since the value of n is
halved with each recursive call — and at each level we perform either 4 or 5
arithmetic operations.

[Aside: What would a rigorous proof of this look like? It’s possible, though a
bit fiddly, to give a direct proof using what we’ve covered so far, by formulating
a suitable induction claim. However, in Lecture 10 we’ll be meeting a tool called
the Master Theorem, which allows us to deal with this kind of situation rigorously
with a minimum of fuss.]

Ezxplain why after the first sweep through the array, the largest element will be in
its correct place at position n — 1.

Suppose the largest element starts at position k. If k = n — 1, then this element
is already in the correct place, and clearly nothing will happen to move it. If
k < n—1, then when j reaches k, this largest element will be moved to position
k+1, and will then continue being moved to the right until j reaches n — 2, when
the element will have reached position n — 1.

Develop this idea to show that after n — 1 sweeps, the array will be fully sorted.

Once the largest element is in position n — 1, exactly the same reasoning shows
that after the second sweep, the second largest element will be in its correct place
at position n — 2. A simple induction shows that after ¢ sweeps, the largest 4
elements z1 < zo < --- < x; will be in their places at positionsn—1,n—2,...,n—i
respectively. In particular, after n — 1 sweeps, the top n — 1 elements are in
the right place, which can only mean that the remaining element (the smallest
element) is also in the correct place at position 0.

(b) Asymptotic worst- and best-case number of comparisons for BubbleSort.

The worst and best cases are the same: on all inputs of length n, the algorithm
performs exactly (n — 1)? comparisons, which is ©(n?).

(¢) Write some pseudocode for a new version, BubbleSort2, that incorporates both
improvements.

The first improvement is suggested by the answer to (a), when we come to sweep
i, we know that the top ¢ — 1 elements are already in their place, so we can stop
at j = n — 1 — 4. For the second improvement, we may use a boolean flag to
record whether a swap has so far happened on the current sweep.

BubbleSort2(A):
i=1
repeat
i=i41
flg = false
for j = 0 to |A|—i
if Aj] > Afj+1]
swap A[j] and A[j+1]
flg = true

until flg = false
(d) Asymptotic worst- and best-case number of comparisons for BubbleSort2.

The worst case number of comparisons has roughly halved (now n(n—1)/2), but
is still ©(n?). The worst case occurs when the input A is reverse-sorted.

The best case is now just n —1 = ©(n): this occurs when A is already sorted. In
this case, even the first sweep does not do any swaps, and we can stop immedi-
ately.

(e) Argue that the number of comparisons performed by BubbleSort2 on input A
is at least the unsortedness of A.

A rather pleasing argument. Suppose i,j is any inversion in the input A, i.e.
we initially have A[i] = x > y = A[j]. Track the movements of x and y as the
computation proceeds. At the start we have x before y, and at the end (when
A is sorted) we must have x after y. But since both x and y can move by only
one position at a time, there must be a time when these elements meet and are
swapped; and at this point, they will be compared. So for any inversion i,j we
have an associated comparison, and clearly no two inversions are associated with
the same comparison in this way. So

number of comparisons > number of inversions.

3. Write a version of MergeSort that uses just two arrays A and B of size n.

We require two subroutines:

e MergeAtoB(m,p,n): merges the segment A[m],...,A[p—1] with the segment
Alpl,...,A[n—1] (assuming these segments are themselves already sorted), and
writes the result to B[m],... ,Bn—1].

e MergeBtoA (m,p,n): merges the segment B[m],... ,B[p—1] with the segment
Blp],...,B[n—1], and writes the result to A[m],...,A[n—1].

These are easy adaptations of the Merge procedure from lectures, except that they
need not return a value. Note that these should work correctly even when one of the
segments has length 0.

The following recursive procedure for MergeSort will then work:

MergeSort(m,n):
if n—m > 1

q = [(m+n)/2]

p = [(m+q)/2]

r = |(q+n)/2]
MergeSort(m,p)
MergeSort(p,q)
MergeSort(q,r)
MergeSort(r,n)
MergeAtoB(m,p,q)
MergeAtoB(q,r,n)
MergeBtoA (m,q,n)

What is the memory space use of this algorithm?

The arrays A and B (together) occupy ©(n) of memory: this is the main space re-
quirement.

However, we also need to keep track of certain information for each of the recursive
calls to MergeSort currently in progress: specifically, the values of m,n,q,p,r, plus
a record of which line of code we’ve got to in that call, so that we know where to
return to. This is ©(1) of information per call, and the maximum depth of recursion
is [log,(n)], so ©(lgn) of memory altogether. (In a typical programming language
implementation, all this information will be stored on the call stack.)

While a call to MergeAtoB or MergeBtoA is in progress, there will also be the
variables 1,j,k associated with this call: just ©(1) space.

So the total memory requirement is ©(n) + O(lgn) + (1) = O(n).

Alternative approach: The main improvement in 4-way solution is coming from
the switch from Merge/MergeAtoB becoming procedures (where sorted output resides
in A) instead of functions (where output gets saved into new sub-array).

e We can take the same approach for a 2-way split.

e A is the input array (also where the sorted output is saved) of size n, B is the
“scratch array” of same size.

o We set up Merge as MergeAtoB. We also have an extra method called copy-
BtoA.

Then we can have the following 2-way implementation:

MergeSort(m,n):
ifn—m > 1
b= |(m+n)/2]
MergeSort(m,p)
MergeSort(p,n)
MergeAtoB(m,p,n)
copyBtoA (m,n)

The arrays A and B take O(n) of memory: like John’s algorithm.

Information stored on Stack for each of the recursive calls to MergeSort in progress:

e values of m,p,n

e plus a record of which line of code we’ve got to in that call, so that we know
where to return to.

This is ©(1) of information per call. The maximum depth of recursion is [lg(n)], so
O(1gn) of memory altogether. Similar/fewer variables i,j,k for mergeAtoB/copyBtoA
calls to store on stack..

So the total memory requirement is ©(n) + O(lgn) + (1) = O(n).

John comment’s that his 4-way method avoids extra copyings that don’t do any merg-
ing: if we expand this 2-way method by 2 levels, it does the same merges as John’s
but also some copyings. So this increases the leading coefficient inside the O just a
bit. He vaguely recalls he once did some experiments which confirmed that this made
a modest but noticeable difference to the runtime.

