
Informatics 2 – Introduction to Algorithms

and Data Structures

Tutorial 4: The Master Theorem and Heaps

1. In Lecture 8, we gave the following pseudocode for a binary search procedure, which
searches the dictionary items A[i], A[i+1], . . . , A[j−1] within a sorted array A for one
matching a given key:

binarySearch(A,key,i,j):
if j−1 = i

if A[i].key = key
return A[i].value

else FAIL
else

k = b i+j/2 c
if key < A[k].key

return binarySearch(A,key,i,k)
else return binarySearch(A,key,k,j)

For n ≥ 1, let T (n) denote the worst-case number of line executions required to
evaluate binarySearch(A,key,i,j) when j−i = n.

(a) Write down an ordinary recurrence relation satisfied by T (n), that is, one that
allows us to calculate the exact number of line executions for a given n. (You
may make reasonable decisions of your own as to what precisely counts as a ‘line
execution’.) Justify your recurrence relation as carefully as you can.

(b) Simplify this down to an asymptotic recurrence relation that can be used to
determine the growth rate of T . Apply the Master Theorem to find this growth
rate. Does this result agree with what you know by other means?

(c) Also apply the Master Theorem to give tight asymptotic solutions for the follow-
ing recurrences. Assume T (1) = Θ(1) in each case, and ignore floor and ceiling
issues.

i. T (n) = 2T (n/3) + Θ(n)

ii. T (n) = 7T (n/2) + Θ(n2)

iii. T (n) = 2T (n/4) + Θ(
√
n)

1



2. Draw the heap, and each intermediate state, which is created when we apply the Max-
Heap-Insert algorithm to the following sequence of elements 12, 5, 4, 8, 9, 1, 16,

20, 7, 6, starting with an empty heap.

At each step draw both the tree representation of the heap and the contents of the
array representation (where the j-th element on the i-th level of the heap gets stored
in index 2i − 1 + j − 1).

3. Show that when our input array is n numbers in sorted order, then it will take time
Ω(n log(n)) to insert them one-by-one into an initially empty heap. Give details of the
running-time we will have for each of the individual Max-Heap-Insert operations (and
why), and then show that the total running-time for this bad case satisfies Ω(n log(n)).

4. Give short mathematical expressions for Parent(i), Left(i) and Right(i), the methods
which return the indices of these related items in a indexed-from-0 array representation
of the Heap.

5. As mentioned in lectures, the implementation of Heaps in Python differs from the
traditional set-up in [CLRS] and our lecture slides, with some operations being slightly
different and different names on familiar operations.

Download a recent release of Python, for example:
https://www.python.org/downloads/release/python-3130/

Once unpacked, look for the file heapq.py in the subdirectory Lib, and open it (with
any text viewer). Go through the file, and make notes on the differences between their
implementation and the structure/naming from our lecture notes.

2


