
Introduction to Theoretical Computer Science
Lecture 10: (Polynomial) Complexity

Richard Mayr

University of Edinburgh

Semester 1, 2025/2026

Time Complexity

We have looked into whether problems can be computed or not.
But are they easy to compute or hard to compute?

Time Complexity
The time complexity of a (deterministic) machine M that halts on all
inputs is a function f : N→ N where f (n) is the maximum number of
steps that M uses on any input of size n.

Example

Example
Recall that {0i1i | i ∈ N} is a CFL and decidable by, e.g., a TM M1 that
given input w :

1 Scan w and reject if anything not in {t, 0, 1} or 10 is found.
2 While there are 0s and 1s left in the tape:

I Scan across and replace with blanks both the leftmost 0 and the
rightmost 1.

3 If any 0s or 1s are left on the tape, reject. Else, accept.

Time complexity measure:

w ε 01 0212 0313 0414 0515

f (|w |) 2 8 19 34 53 76

Big Letters

Recall from previous courses...

Big O and Ω

Let f , g : N→ R≥0. Say that f (n) ∈ O(g(n)) if there exists c , n0 > 0
such that for all n ≥ n0:

f (n) ≤ c · g(n)

Similarly f (n) ∈ Ω(g(n)) if:

f (n) ≥ c · g(n)

Example
f (n) = 5n3 + 2n2 + 22n + 6 is ∈ O(n3).
M1’s complexity isO(n2).

Logarithms

Recall that comparison-based sorting has Ω(n log n) time complexity,
and we have anO(n log n) algorithm.

Omitting the bases
We may safely omit the base of the logarithms here because:

loga n =
logbn
logba

Model Concerns

Addition of two numbers isO(n) in our RM models.

Why is this bad?
In TMs, addition isO(log n) (e.g. consider binary addition).
⇒ exponential penalty for RMs!

If we extend our RMs with ADD(i , j) SUB(i , j) which instantly
add/subtract Rj from/to Ri , putting the result in Ri :

Less inaccurate.. but
Now addition isO(1) instead ofO(log n), but this is a smaller
inaccuracy than the exponential penalty from before.

Variations in Models

Problem?
For sorting, we counted the number of comparisons as our time
measure: we assumed comparison of small numbers and big numbers
take the same time.

What about control flow or memory access costs? In RMs this can
be fast, but in TMs we have to move symbol by symbol.
As we’ve seen, addition has different complexities based on the
model.

Question
Can we ignore these differences? How?

What counts as different?

While complexity is useful, the measures are slightly bogus:
If a problem isO(n) on some model, it’s surely easy on any
model.
Not really: If n is a petabyte..
If a problem is Ω(2n) on some model, it’s surely hard on any
model.
Actually: There are problems that are much worse than this, but
still solvable for real examples. We’ll see later.
What about something that isO(n10) or Ω(n10)?
An Ω(n10) problem seems practically insoluble.
However: Maybe a new algorithm or fancy model makes it Ω(n2)?

There’s also our coefficients. If f (n) ≥ 10100 log n, that’s only
O(log n).
However this isn’t common.

Complexity Classes

Definition
Let t : N→ R≥0. A time complexity class TIME(t(n)) to be the
collection of all problems that are decidable by a machine inO(t(n))
time.

We’ll give a more precise definition of time in terms of bounded
machines later.

Example
Recall A = {0i1i | i ∈ N}. Our TM M1 can decide this inO(n2).
Therefore A ∈ TIME(n2).

Can we do better?

Can we come up with a machine M2 that shows A is in TIME(t(n)) for
some t(n) that is asymptotically < n2?

Example
Given w input:

1 Scan w left to right and reject if 10 is found.
2 Repeat as long as there are 0s and 1s on the tape:

1 Scan from right to left and reject if there is an odd number of
non-Xs on the tape.

2 Scan from left to right and replace every other 0 by an X, beginning
from the first 0. Then, do the same for 1s.

3 If neither 0s nor 1s are left, accept. Else, reject.

Steps 1, 2.1, 2.2, and 3 are allO(n). Step 2 runs the substepsO(log n)
times. So this isO(n log n).

Comparing real times

Comparing the running times of M1 and M2:

w ε 01 0212 0313 0414 0515

fM1(|w |) 2 8 19 34 53 76
fM2(|w |) 1 15 45 63 117 141

M2 has “better” complexity, but M1 performs better for small n.
(M2 will be faster for 020120.)

Doing better

Could we do still better for A? I.e. a sub-O(n log n) algorithm for A?

Example (Two tape TMs)
The answer is no, for a single-tape TM. But in a two tape TM, we can
copy all 0s onto the second tape and then compare the number of 0s
to 1s by moving the second tape head synchronously with the first.

Polynomial Time

Definition

P =
⋃
k∈N

TIME(nk)

That is, the class of problems decidable with some (deterministic)
polynomial time complexity.

Problems in P are called tractable.
The class is robust: “Reasonable” changes in model don’t change
it, and “reasonable” translations between problems preserve
membership in P.
Any problem not in P is Ω(nk) for every k , e.g. 2n or 2

√
n.

Outside P

Definition
A polynomially-bounded RM is an RM together with a polynomial (wlog
nk for some k), such that given an input w , it will always halt after
executing |w |k instructions.

A problem Q is in P iff it is computed by polynomially-bounded RM.

Polynomial Reductions

Recall:
To prove that a problem P2 is hard, show that there is an easy
reduction from a known hard problem P1 to P2.

Definition
A polynomial reduction from P1 = (D1,Q1) to P2 = (D2,Q2) is a
P-computable function f : D1 → D2 such that d ∈ Q1 iff f (d) ∈ Q2.

If P2 is in P, then P1 is in P straightforwardly.
Therefore: To prove that a problem P2 is not in P, show that there
is a polynomial reduction from a known non-P problem P1 to P2.

Question: Is this more like a mapping or Turing reduction?

Apparently Intractable Problems

These problems appear to be non-P, so if they are, we could use them
as our known non-P problems.

Example (Hamiltonian Path Problem)
Given a graph G = (V ,E), is there a path that visits every vertex in V
exactly once?
We could solve this inO(|V |!), but this is not ideal..

Example (Timetabling)
Given students taking exams, and timetable slots for exams, is it
possible to schedule the exams so that there are no clashes? It also
apparently requires looking at exponentially many possible
assignments.
(That’s why Registry starts timetabling exams 9 weeks in advance...)

Open problem: Are they really not in P?

Checking

Consider HPP (the Hamiltonian Path Problem) or timetabling. Both
are apparently not in P.

However..
They are easy to check:
Given a claimed solution, it’s tractable to check if the solution is
indeed a correct solution.

Theorem
Any problem that can be checked in polynomial time on a
deterministic RM/TM can be computed in polynomial time on a
nondeterministic RM/TM.

Nondeterminism

We can have nondeterministic RMs just like we have nondeterministic
finite automata.

The Change
Add a special instruction MAYBE(j) that will nondeterministically
either do nothing or jump to Ij .

Example (generating a nondetermined number)
CLEAR R0

beg : MAYBE end
INC 0
GOTO beg

end :

Non-nondeterminism

Acceptance
An NRM accepts if there is some run (sequence of instructions through
the choices) halts and accepts.
“Accepts” could mean halting, halting with 1 in R0 or anything else.

Nondeterminism is NOT probability. No randomness is involved.
The presence of infinite runs doesn’t matter if there are also
accepting finite runs.
I sometimes like to think of MAYBE as FORK: the machine forks a
copy of itself which takes the jump. If any copy accepts, it signals
the OS, which kills off all the others.

Question: Do NRMs have the same deciding power as RMs?

Comparing RMs and NRMs

Power
NRMs have the same deciding power as RMs, because we can use the
interleaving technique to simulate all runs of an NRM.
Sipser has the same result for TMs.

However!
In time n, an RM can explore onlyO(n) possibilities, but an NRM can
explore 2O(n) possibilities.

NRMs are potentially exponentially faster than RMs.

NP

Definition
Let t : N→ R≥0. Define NTIME(t(n)) to be the collection of all
problems that are decidable by an NRM inO(t(n)) time.

Definition

NP =
⋃
k∈N

NTIME(nk)

That is, the class of problems decidable with some nondeterministic
polynomial time complexity.

Is HPP in NP? Nondeterministically “guess” any path and check if it is
Hamiltonian (O(n)).

A Short Aside

Can we implement nondeterminism or is it just a theoretical exercise?

Quantum Computing
Quantum computers can achieve a similar effect: an n-qubit computer
computes on all 2n values simultaneously.
However, one cannot really access all these 2n values in an arbitrary
way.
Not every NP algorithm is quantum-computable (as far as we know).
Not every problem (e.g., odd/even parity of bitstrings) can be solved
faster by quantum computers.
Moreover, in practice it is hard to get many qubits..

Is NP All?

Is every exponentially-bounded problem in NP? probably No!

Tough problem
Given a machine M and input w , determine if M halts in less than 2|w |
steps.
There doesn’t seem to be anything to do but run the machine M for an
exponential number of steps⇒ Probably not in NP.

	Complexity Measures
	Polynomial Time
	Nondeterminism

