
Introduction to Theoretical Computer Science
Lecture 11: NP-Completeness

Richard Mayr

University of Edinburgh

Semester 1, 2025/2026

Hardness

Definition
A problem P1 is polynomially reducible to P2, written P1 ≤P P2, if
there is a polynomially-bounded reduction from P1 to P2.

Recall:
To prove that a problem P2 is hard, show that there is an easy
reduction from a known hard problem P1 to P2.

Definition
A problem P is NP-Hard if, for every A ∈ NP, A ≤P P

If a problem P1 is NP-hard and P1 ≤P P2 then P2 is NP-Hard.
To prove that a problem P2 is NP-hard, show that there’s a
polynomial reduction from a known NP-hard P1 to P2.

Completeness

Question
If any NP-hard problem is shown to be in P, what does that mean?

Definition
A problem is NP-complete if it is both NP-hard and in NP.

Do NP-Complete Problems Exist?
There are many such problems, including HPP and Timetabling. In
fact, almost all NP-problems encountered in practice are either in P,
or NP-complete.
Computers and Intractability - A guide to theory of NP-completeness, M.R. Garey and D.S.
Johnson, Freeman 1979 lists a whole bunch.

The original NP-Complete problem

The Cook-Levin theorem states that a particular NP problem, SAT , is
NP-complete. The theorem is usually proved for TMs; we shall do it
later for RMs.

Why Cook-Levin?
The notion of NP-completeness, and the theorem, were due to
Stephen Cook (and partly Richard Karp)—in the West. But as with
many major mathematical results of the mid-20th century, they were
discovered independently in the Soviet Union, by Leonid Levin. Since
the fall of the Iron Curtain made Soviet maths more accessible, we try
to attribute results to both discoverers.

SAT

SAT is a very significant problem about boolean formulae.

The SAT Problem
Given a boolean formula ϕ over a set of boolean variables Xi , is there
an assignment of values to Xi which satisfies ϕ?
(i.e. makes ϕ true?)
Equivalently, is ϕ non-contradictory?

(A ∨ B) ∧ (¬B ∨ C) ∧ (A ∨ C) is satisfiable, e.g. by making A and C
true. (A ∧ B) ∧ (¬B ∧ C) ∧ (A ∧ C) is not satisfiable.
The size of a SAT problem is the number of symbols in ϕ.
SAT is obviously in NP: just nondeterministically “guess” an
assignment and check it.
It’s also apparently exponential in reality: no obvious way to
avoid checking all possible assignments (the truth table method).

The Proof

The SAT problem is in NP: Nondeterministically guess an
assignment and check it in polynomial time.
The SAT problem is NP-Hard: Shown by reduction from any NP
problem to SAT .

The Reduction
Suppose (D,Q) ∈ NP. We shall construct a reduction Q ≤P SAT .
Given an instance d ∈ D, we shall construct a formula ϕd which can
be satisfied if its variables describe the successful executions of an
NRM checking Q. This machine can be polynomially bounded, so the
size of ϕd will be polynomial in the size of d .

The Variables

Our NRM for Q, M = (R0, . . . ,Rm−1, I0, . . . , In−1) runs for s steps (i.e.
p(|d |) where d is our input and p is our polynomial bound).

Name Meaning How Many
Ctj Program counter at step t is on Ij . s · n
Rtik kth bit of Ri at step t. (2s) ·m · s

Why 2s?
How big can the registers get? Running s steps of ADD(0,0) will make
R0 double s times, if it starts at 2|d | then we need 2|d |+s capacity.
Then w.l.o.g. 22s i.e. 2s bits is enough.

The Formula

C00 ∧ ρinit ∧ χone ∧
∧
t

χt ∧ α

Name Meaning How Many
χone Program counter is in one place. s · n2

χt Step t + 1 follows from step t. s2 ·m
ρinit Initial register values m · n
α machine accepts s

Details
Some formulae are easy:

Program counter is in one place

χone ≡
∧

t
∨

j

(
Ctj ∧

∧
j ′ 6=j ¬Ctj ′

)
Some are more tedious:

Step t + 1 follows from step t
χt ≡ ϕt ∧ ρt where ϕt models control flow changes and ρt models
register changes.
ϕt ≡

∨
j (Ctj ∧ νtj), where νtj is:

Ct+1,j+1 if Ij is INC, ADD, or SUB.
Ct+1,j+1 ∨ Ct+1,j ′ if Ij is MAYBE(j ′)(
(
∨

k Rtik) ∧ Ct+1,j+1
)
∧
(
(
∧

k ¬Rtik) ∧ Ct+1,j ′
)

if Ij is DECJZ(i , j ′)

Register changes

The formulae concerning registers are very tedious, but can easily be
found. See your hardware course!

Exercise
Write a formula ρ

+
tii ′ which states that at step t + 1, Ri will have the

sum of the values in Ri and Ri ′ at step t.

Despite this being very tedious, these formulae are polynomial
(O(s4)) !

3SAT

ϕ is in conjunctive normal form if it is of the form
∧

i
∨

j Pij where
each Pij is a literal (either a variable P or negation of one ¬P .).
ϕ is in k-CNF if each clause

∨
j Pij has at most k literals.

The Problem
3SAT is the problem of whether a satisfying assignment exists for a
formula in 3-CNF.

Reduction from SAT to 3SAT is difficult, because normally converting
to 3-CNF is an exponential blowup. The Tseitin encoding is used
instead to give a not-equivalent but equisatisfiable formula.

Note: For TM, the Cook-Levin theorem is shown directly for 3SAT.

Clique

The CLIQUE problem
Given a graph G = (V ,E) and a number k , a k-clique is a k-sized
subset C of V , such that every vertex in C has an edge to every other.
(C forms a complete subgraph.) Decide whether G has a k-clique.
Exercise: Why is CLIQUE ∈ NP?

Reducing from 3SAT , we have a formula

ϕ =
∧

1≤i≤k

(xi1 ∨ xi2 ∨ xi3)

The Graph
Each xij is a vertex. Connect xij to xi ′j ′ iff: i 6= i ′ and xi ′j ′ is not the
negation of xij .
i.e. we connect literals in different clauses so long as they are not inconsistent.

Why does this work?

Since the vertices in one clause are disconnected, finding a k-clique
amounts to finding one literal for each clause, such that they are all
consistent — and so represent a satisfying assignment. Conversely,
any satisfying assignment generates a k-clique.

P vs. NP

As previously mentioned, we don’t know if P and NP are really
distinct classes.
Find a polynomial time algorithm for any NP-hard problem and you
can win yourself one million US dollars from the Clay Institute. (Also hire
bodyguards because most web/banking security depends on such problems being hard.)
Many complexity theory results start with “if P 6= NP...”

Example (NP-Intermediacy)
A problem is NP-Intermediate if it is in NP but not in P nor
NP-complete.
If P 6= NP, then graph isomorphism is such a problem
(and there aren’t many others).

NP in Practice

As far as we know, NP problems are just hard: need exponential
search, soO(p(n) · 2n). So how do we solve them in practice?

Randomized algorithms are often useful. Allow algorithms to toss
a coin. Surprisingly one can get randomized algorithms that solve
e.g. 3SAT in timeO(p(n) · (4

3)
n).

(Why is this useful? 2100 ≈ 1031, while 1.33100 ≈ 1012)

Catch: (really) small probability of error!
In many special classes (e.g. sparse graphs, or almost-complete
graphs), heuristics lead to fast results. See
http://satcompetition.org/ for the state of the art.

http://satcompetition.org/

Next time...

We’ll be looking at the boundaries of the class NP, and what lays
beyond. Specifically, the classes of coNP and PSPACE, as well as the
polynomial hierarchy, analogous to the arithmetic hierarchy we’ve
already seen, but contained entirely within PSPACE decidable
problems.

	Hardness and Completeness
	Other NP-Complete Problems

