
Introduction to Theoretical Computer Science
Lecture 12: The Polynomial Hierarchy, Alternation and PSPACE

Richard Mayr

University of Edinburgh

Semester 1, 2025/2026

The Class CoNP

trick Question
Is the class NP closed under complement?

We don’t know.

Question
Why can’t we just flip the answer, like we do for P?

Nondeterministic machines accept if just one path accepts. To flip the
answer of an NRM, we’d have to accept an answer if all paths reject.
This is no longer an (angelic) NRM (resp. NTM).

Question
What is NP ∩ CoNP? is it P? (we don’t know)

What we have now

NP CoNP

P

?

Sigmas

We shall introduce notation to describe polynomial problems.

Sigma
The set ΣP

1 describes all problems that can be phrased as
{y | ∃Px ∈ N. R(x , y)}, where R is a P-decidable predicate and ∃Px . . .
indicates that x is of size polynomial in the size of y .

If a problem Q ∈ ΣP
1 then Q is in NP. Why?

(we can “guess” an x and polynomially test R(x , y))
If a problem Q is in NP then P ∈ ΣP

1 . Why?

Certificates
We can say that x is a certificate showing which “guesses” can made
by our NRM giving an accepting run.

So, NP = ΣP
1 .

Pis

Pi
The set ΠP

1 describes all problems that can be phrased as
{y | ∀Px ∈ N. R(x , y)}, where R is a P-decidable predicate and ∀Px . . .
indicates that x is of size polynomial in the size of y .

ΣP
1 = {x | ∃Py . R(x , y)}

= {x | ¬∃Py . R(x , y)}
= {x | ∀Py . ¬R(x , y)}
= ΠP

1

As ΣP
1 is NP, ΠP

1 is CoNP.

Deltas

Delta
The set ∆P

1 describes the set P

This is different from definitions in the arithmetic hierarchy where ∆1
describes the intersection of Σ1 and Π1.

Relabeling

ΣP
1 ΠP

1

∆P
1

Moving Higher

Definitions
ΣP

2 is all problems of form {x | ∃Py .∀Pz . R(x , y , z)}.
ΠP

2 is all problems of form {x | ∀Py .∃Pz . R(x , y , z)}.
∆P

2 = PNP (deterministic polynomial time with NP oracle.

Note that ΣP
1 ,ΠP

1 ,∆P
1 are all ⊆ ∆P

2 (and therefore ⊆ ΣP
2 and ⊆ ΠP

2).
Why?
(our R can simply “ignore” one of the parameters)

The Polynomial Hierarchy

∆P
1

ΣP
1 ΠP

1

∆P
2

ΣP
2 ΠP

2

An equivalent characterisation
We can define in terms of oracles:

∆P
2 is all problems that are

decidable in polynomial time by
some deterministic TM/RM with
an O(1) oracle for some
complete problem in ΣP

1 , i.e. it
is P with an O(1) oracle for NP.
ΣP

2 allows the TM/RM to be
nondeterministic, i.e. it is NP
with an O(1) oracle for NP.
ΠP

2 is CoNP with an oracle for
NP.

Building up

In general, for any n > 1:
∆P

n is all problems that are decidable by some deterministic,
polynomially bounded TM/RM with anO(1) oracle for some
problem ∈ ΣP

n−1.

ΣP
n are all problems that are decidable by some nondeterministic,

polynomially bounded TM/RM with anO(1) oracle for some
problem ∈ ΣP

n−1.

ΠP
n are all problems decidable by some co-nondeterministic,

polynomially bounded TM/RM with anO(1) oracle for some
problem ∈ ΣP

n−1.

Co-nondeterminism
Could also be called demonic nondeterminism. Like our normal
(angelic) nondeterminism but only accepts if all paths accept.

Definition with oracles

XY means decision problems solvable in X with the help of anO(1)
oracle for problems in Y .

Definitions
∆P

0 := ΣP
0 := ΠP

0 := P

ΣP
i+1 := NPΣ

P
i

ΠP
i+1 := coNPΣ

P
i

∆P
i+1 := PΣ

P
i

Alternation

Alternation
Equivalently ΣP

n are all problems that can be phrased as some
alternation of (P-bounded) quantifiers, starting with ∃P:

{w | ∃Px1.∀Px2.∃Px3.∀Px4. . . . xn. R(w , x1, . . . , xn)}

ΠP
n starts instead with ∀P:

{w | ∀Px1.∃Px2.∀Px3.∃Px4. . . . xn. R(w , x1, . . . , xn)}

Alternating Machines

Alternating Machines combine the acceptance modes of both angelic
and demonic nondeterministic machines.

Alternating Register Machines
Consider NRMs where instead of just a MAYBE instruction we have a
MAYBE∀ instruction and a MAYBE∃ instruction.

MAYBE∃ is a nondeterministic choice where we accept if one
branch accepts.
MAYBE∀ is a nondeterministic choice where we accept only when
both branches accept.

Alternating Turing Machines are defined by labelling states with either
∀ or ∃.

Alternating Machines and the Polynomial Hierarchy

The class ΣP
n could equivalently be defined as the class of

problems decided in polynomial time by an alternating machine
that initially uses ∃-nondeterminism, and every path in the
machine swaps quantifiers (i.e. to ∀ or back to ∃) at most n − 1
times.
ΠP

n is the same, except that we start with ∀ instead.

The class AP
AP is the class of all problems decidable by an alternating machine in
polynomial time, without any restriction on swapping quantifiers.
AP is known to be equal to PSPACE (more on this in a moment)

A Fragile House of Cards
Warning
The polynomial hierarchy could collapse at any point.
(i.e. all of the classes in the PH could be equal)

We don’t know that P 6= PSPACE, and the entire polynomial hierarchy
is contained inside AP which = PSPACE.

Wait, what’s PSPACE?
An RM/TM is f (n)-space-bounded if it may use only f (inputsize) space.
For TMs, space means cells on tape; for RMs, #bits in registers.
PSPACE is the class of problems solvable by
polynomially-space-bounded machines.

The following inclusions follow from the definitions.
P ⊆ NP ⊆ PSPACE ⊆ EXPTIME.
At least one of these inclusions must be strict, because we know that
P ⊂ EXPTIME. But we don’t know which one.
The common conjecture is that they are all strict.

	P vs NP vs CoNP
	Polynomial Hierarchy
	Alternation and PSPACE

