Introduction to Theoretical Computer Science
Lecture 13: More Space Complexity

Richard Mayr

University of Edinburgh

Semester 1, 2025/2026

Logarithmic Space

Definition
L = SPACE(logn) = NL = NSPACE(log n)

where SPACE(f(n)) (resp. NSPACE(f(n))) are the classes of problems
decidable in f(n)-bounded space by a deterministic (resp.
non-deterministic) Turing machine.

How can a Turing machine have a sublinear space bound?

Revised Bounded Turing Machine

Define a f(n)-space-bounded Turing machine with two tapes:
@ the input tape is read-only, and just contains the input of size n.
@ the working tape, which is read-write and bounded by f(n).

ProblemsinL

Example
{ok1k | ke N} eL Why?

Example
PATH = {(G,s, t) | t reachable from s in directed graph G} € P

IsitinL?
@ We don’t know.

@ Undirected version is in L (Reingold 2005), but the proof is not
easy (because symmetric logspace SL =L).

@ What about NL?

Problems in NL

PATH NL
Oninput ((V, E),s, t):
@ store v «+ s on the working tape
@ repeatupto|V|— 1times:
© nondeterministically ‘guess’ v/ where (v,v') € E
Q@ ifv/ =taccept, elsesetv « v/
@ reject

Why is this in NL?

Question
L C NL, butis NL C L? We don’t know.

Log-space transducers

Definition

A log-space transducer is a Turing machine with three tapes:
@ The input tape, which is read-only.
© The working tape, which is read-write and log-bounded.
© The output tape, which is write-only.

A log-space reduction is a reduction computable by a log-space
transducer.

Hardness

Definition
A problem P is log-space reducible to Py, written Py, <; P,, if thereis
a log-space reduction from P4 to Ps.

Recall:

To prove that a problem P, is hard, show that there is an easy
reduction from a known hard problem P4 to P5.

Definition
A problem P is NL-Hard if, forevery Ae NL,A <, P J

@ If aproblem Py is NL-hard and P; <; P, then P, is NL-Hard.

@ To prove that a problem P, is NL-hard, show that there’s a
log-space reduction from a known NL-hard P4 to P;.

Completeness

Definition
A problem is NL-complete if it is both NL-hard and in NL.

Example

PATH is NL-complete.
@ We already know PATH € NL.
@ Why is it NL-hard?)

NL-hardness of PATH

Let P € NL. Given a nondeterministic log-space Turing machine M
that computes P, we:

@ Construct a control-flow graph G of all the reachable
configurations of M for the given input.

@ Ask if there is a PATH from the start configuration s to the accept
configuration ¢2.

The transducer needs only log space on the working tape to produce
the graph on the output tape.

Thus..

As PATH € NL and PATH is NL-hard, PATH is NL-complete.

Since PATH € P, we conclude L C NL C P.

1W.l.o.g. we say there is just one accepting configuration.

L vs NL

We hypothesise that we pay an exponential time penalty when we
simulate nondeterministic machines with deterministic ones, but
what about space?

Note: We don’t know whether NL ¢ L, so it’s possible there’s no
penalty.

Savitch’s Theorem

Define a recursive algorithm kpath(s, t, k) that returns true iff there is
a path of length k from sto tina graph G = (V, E).

@ If k=0, returns =t.
@ If k=1, return (s, t) € E.
@ Ifk>1,foreachu e V:
If kpath(s, u, | £]) A kpath(u, t, [£]), return true.

kpath can compute PATH in Iogz(]G|) space, so NL C L2. In general
NSPACE(f(n)) C SPACE(f2(n)).

Certificates

Just as with NP, we can also characterise NL in terms of a verifier for
certificates (candidate solutions):
Theorem

A problem P € NL iff there is a log-space verifier for P-certificates.
A log-space verifier has three tapes:

© A input tape that is read-only.
© A working tape that is log-bounded.
© A certificate tape that is read-once (left to right).

The size of the certificate we are verifying must be polynomial in the
size of the input.

Exercise: Show that this is equivalent to our NSPACE definition
previously.

PATH NL

Example
A certificate for PATH is a list of vertices vg, vq, ..., v, forming an
acyclic path from s to tin a graph G = (V, E). We can check with a
log-space verifier that:

@ s=\g

v, =1t

® (vj,vjy1) € Eforall0 <j <k
We only read the certificate once, left to right, and it suffices to store
two nodes in our working tape, so this is log space®.

“Node names can be binary digits.

NL vs coNL

coNL is all problems whose complement is in NL.

Immerman-Szelepcsényi Theorem

NL = coNL
More generally:

NSPACE(f(x)) = coNSPACE(f(x))
Thus:

PSPACE = coPSPACE

Proof of Immerman-Szelepcsényi

We prove this by showing PATH € NL.
Intuition

Say I want to convince you (a verifier) that in a graph G = (V, E), there

is no path from s to t. I can do this by convincing you of the following
two statements:

© There are exactly my| distinct vertices reachable from s by paths
of length < |V/|.

@ The target vertex t is not one of those my| vertices.

So, what are the certificates?

@ For Part 2, we just give a list of myy| distinct vertices that are not
t, along with a certificate for each vertex v in our list that v is
reachable from s by paths of length < |V/|

@ For Part 1, we do inductive counting...

Inductive Counting

I want to convince you (the verifier) of the following:

Certify this:

There are exactly m)y| distinct vertices reachable from s by paths of
length < |V/|.

To do this, I'll make an inductive argument:

Steps

Foreach k=0,...,|V| -1, I'll show you (the verifier) that:
“if my vertices are reachable by paths of length < k,
then my 1 vertices are reachable by paths of length < k + 1.”

Sub-certificates

Steps

Foreach k =0,...,|V| -1, I'll show you (the verifier) that:
“if my vertices are reachable by paths of length < &,
then my 4 vertices are reachable by paths of length < k + 1.”

The certificate for each step takes the form of a sub-certificate for
each vertex v € V:

@ If vis reachable by paths of length < k + 1, then it is just a path
fromstovoflength< k+1

@ If vis not reachable by paths of length < k + 1, then itis a list of
m, distinct vertices that do not have an edge to v, and a
certificate for each vertex v/ in our list that v/ is reachable from s
by paths of length < k.

There should be exactly m, 4 “reachable” sub-certificates (our
verifier will check this).

Sub-polynomiality

We have a finer-grained notion of reduction now, so we can make
distinctions smaller than P:

P-Completeness

A problem is P-complete iff it is in P and all problems in P can be
log-space reduced to it.
Examples: Emptiness of CFGs, True Boolean Circuit Value, etc.

Logarithmic Hierarchy

We can imagine a logarithmic hierarchy like the polynomial hierarchy,
i.e. the languages decided by an alternating Turing machine in
logarithmic space with a bounded number of alternations.

By Immerman-Szelepcsényi, the hierarchy collapses, i.e. ZJ'-' = NL for
allj. But for unbounded alternations, AL = P.

	Log Space Complexity

