
Introduction to Theoretical Computer Science
Lecture 13: More Space Complexity

Richard Mayr

University of Edinburgh

Semester 1, 2025/2026

Logarithmic Space

Definition

L = SPACE(log n) NL = NSPACE(log n)

where SPACE(f (n)) (resp. NSPACE(f (n))) are the classes of problems
decidable in f (n)-bounded space by a deterministic (resp.
non-deterministic) Turing machine.

How can a Turing machine have a sublinear space bound?

Revised Bounded Turing Machine
Define a f (n)-space-bounded Turing machine with two tapes:

1 the input tape is read-only, and just contains the input of size n.
2 the working tape, which is read-write and bounded by f (n).

Problems in L

Example
{0k1k | k ∈ N} ∈ L Why?

Example
PATH = {〈G , s, t〉 | t reachable from s in directed graph G} ∈ P

Is it in L?
We don’t know.
Undirected version is in L (Reingold 2005), but the proof is not
easy (because symmetric logspace SL = L).
What about NL?

Problems in NL

PATH ∈ NL
On input 〈(V ,E), s, t〉:

1 store v ← s on the working tape
2 repeat up to |V | − 1 times:
3 nondeterministically ‘guess’ v ′ where (v , v ′) ∈ E
4 if v ′ = t accept, else set v ← v ′

5 reject

Why is this in NL?

Question
L ⊆ NL, but is NL ⊆ L? We don’t know.

Log-space transducers

Definition
A log-space transducer is a Turing machine with three tapes:

1 The input tape, which is read-only.
2 The working tape, which is read-write and log-bounded.
3 The output tape, which is write-only.

A log-space reduction is a reduction computable by a log-space
transducer.

Hardness

Definition
A problem P1 is log-space reducible to P2, written P1 ≤L P2, if there is
a log-space reduction from P1 to P2.

Recall:
To prove that a problem P2 is hard, show that there is an easy
reduction from a known hard problem P1 to P2.

Definition
A problem P is NL-Hard if, for every A ∈ NL, A ≤L P

If a problem P1 is NL-hard and P1 ≤L P2 then P2 is NL-Hard.
To prove that a problem P2 is NL-hard, show that there’s a
log-space reduction from a known NL-hard P1 to P2.

Completeness

Definition
A problem is NL-complete if it is both NL-hard and in NL.

Example
PATH is NL-complete.

We already know PATH ∈ NL.
Why is it NL-hard?

NL-hardness of PATH

Let P ∈ NL. Given a nondeterministic log-space Turing machine M
that computes P , we:

1 Construct a control-flow graph G of all the reachable
configurations of M for the given input.

2 Ask if there is a PATH from the start configuration s to the accept
configuration t1.

The transducer needs only log space on the working tape to produce
the graph on the output tape.

Thus..
As PATH ∈ NL and PATH is NL-hard, PATH is NL-complete.

Since PATH ∈ P, we conclude L ⊆ NL ⊆ P.

1W.l.o.g. we say there is just one accepting configuration.

L vs NL
We hypothesise that we pay an exponential time penalty when we
simulate nondeterministic machines with deterministic ones, but
what about space?
Note: We don’t know whether NL * L, so it’s possible there’s no
penalty.

Savitch’s Theorem
Define a recursive algorithm kpath(s, t, k) that returns true iff there is
a path of length k from s to t in a graph G = (V ,E).

If k = 0, return s = t.
If k = 1, return (s, t) ∈ E .
If k > 1, for each u ∈ V :

I If kpath(s, u, bk2c) ∧ kpath(u, t, dk2e), return true.

kpath can compute PATH in log2(|G |) space, so NL ⊆ L2. In general
NSPACE(f (n)) ⊆ SPACE(f 2(n)).

Certificates

Just as with NP, we can also characterise NL in terms of a verifier for
certificates (candidate solutions):

Theorem
A problem P ∈ NL iff there is a log-space verifier for P-certificates.
A log-space verifier has three tapes:

1 A input tape that is read-only.
2 A working tape that is log-bounded.
3 A certificate tape that is read-once (left to right).

The size of the certificate we are verifying must be polynomial in the
size of the input.

Exercise: Show that this is equivalent to our NSPACE definition
previously.

PATH ∈ NL

Example
A certificate for PATH is a list of vertices v0, v1, . . . , vk forming an
acyclic path from s to t in a graph G = (V ,E). We can check with a
log-space verifier that:

s = v0
vk = t
(vj , vj+1) ∈ E for all 0 ≤ j < k

We only read the certificate once, left to right, and it suffices to store
two nodes in our working tape, so this is log spacea.

aNode names can be binary digits.

NL vs coNL

coNL is all problems whose complement is in NL.

Immerman-Szelepcsényi Theorem

NL = coNL

More generally:

NSPACE(f (x)) = coNSPACE(f (x))

Thus:

PSPACE = coPSPACE

Proof of Immerman-Szelepcsényi

We prove this by showing PATH ∈ NL.

Intuition
Say I want to convince you (a verifier) that in a graph G = (V ,E), there
is no path from s to t. I can do this by convincing you of the following
two statements:

1 There are exactly m|V | distinct vertices reachable from s by paths
of length ≤ |V |.

2 The target vertex t is not one of those m|V | vertices.

So, what are the certificates?
For Part 2, we just give a list of m|V | distinct vertices that are not
t, along with a certificate for each vertex v in our list that v is
reachable from s by paths of length ≤ |V |
For Part 1, we do inductive counting...

Inductive Counting

I want to convince you (the verifier) of the following:

Certify this:
There are exactly m|V | distinct vertices reachable from s by paths of
length ≤ |V |.

To do this, I’ll make an inductive argument:

Steps
For each k = 0, . . . , |V | − 1, I’ll show you (the verifier) that:
“if mk vertices are reachable by paths of length ≤ k ,
then mk+1 vertices are reachable by paths of length ≤ k + 1.”

Sub-certificates

Steps
For each k = 0, . . . , |V | − 1, I’ll show you (the verifier) that:
“if mk vertices are reachable by paths of length ≤ k ,
then mk+1 vertices are reachable by paths of length ≤ k + 1.”

The certificate for each step takes the form of a sub-certificate for
each vertex v ∈ V :

If v is reachable by paths of length ≤ k + 1, then it is just a path
from s to v of length ≤ k + 1
If v is not reachable by paths of length ≤ k + 1, then it is a list of
mk distinct vertices that do not have an edge to v , and a
certificate for each vertex v ′ in our list that v ′ is reachable from s
by paths of length ≤ k .

There should be exactly mk+1 “reachable” sub-certificates (our
verifier will check this).

Sub-polynomiality

We have a finer-grained notion of reduction now, so we can make
distinctions smaller than P:

P-Completeness
A problem is P-complete iff it is in P and all problems in P can be
log-space reduced to it.
Examples: Emptiness of CFGs, True Boolean Circuit Value, etc.

Logarithmic Hierarchy
We can imagine a logarithmic hierarchy like the polynomial hierarchy,
i.e. the languages decided by an alternating Turing machine in
logarithmic space with a bounded number of alternations.
By Immerman-Szelepcsényi, the hierarchy collapses, i.e. ΣL

j = NL for
all j . But for unbounded alternations, AL = P.

	Log Space Complexity

