Introduction to Theoretical Computer Science Lecture 13: More Space Complexity

Richard Mayr

University of Edinburgh

Semester 1, 2025/2026

Logarithmic Space

Definition

$$L = SPACE(\log n)$$
 $NL = NSPACE(\log n)$

where **SPACE**(f(n)) (resp. **NSPACE**(f(n))) are the classes of problems decidable in f(n)-bounded space by a deterministic (resp. non-deterministic) Turing machine.

How can a Turing machine have a sublinear space bound?

Revised Bounded Turing Machine

Define a f(n)-space-bounded Turing machine with two tapes:

- lacktriangledown the *input tape* is read-only, and just contains the input of size n.
- 2 the working tape, which is read-write and bounded by f(n).

Problems in L

Example

 $\{0^k 1^k \mid k \in \mathbb{N}\} \in \mathbf{L}$ Why?

Example

 $PATH = \{\langle G, s, t \rangle \mid t \text{ reachable from } s \text{ in } \mathbf{directed} \text{ graph } G\} \in \mathbf{P}$

Is it in L?

- We don't know.
- Undirected version is in L (Reingold 2005), but the proof is not easy (because symmetric logspace SL = L).
- What about NL?

Problems in **NL**

PATH = NL

On input $\langle (V, E), s, t \rangle$:

- **1** store $v \leftarrow s$ on the working tape
- 2 repeat up to |V| 1 times:
- onndeterministically 'guess' v' where $(v, v') \in E$
- 4 if v' = t accept, else set $v \leftarrow v'$
- reject

Why is this in NL?

Question

 $L \subseteq NL$, but is $NL \subseteq L$? We don't know.

Log-space transducers

Definition

A *log-space transducer* is a Turing machine with three tapes:

- 1 The input tape, which is read-only.
- 2 The working tape, which is read-write and log-bounded.
- 3 The output tape, which is write-only.

A *log-space reduction* is a reduction computable by a log-space transducer.

Hardness

Definition

A problem P_1 is *log-space reducible* to P_2 , written $P_1 \leq_L P_2$, if there is a log-space reduction from P_1 to P_2 .

Recall:

To prove that a problem P_2 is hard, show that there is an easy reduction from a known hard problem P_1 to P_2 .

Definition

A problem P is **NL**-Hard if, for every $A \in \mathbf{NL}$, $A \leq_L P$

- If a problem P_1 is **NL**-hard and $P_1 \leq_L P_2$ then P_2 is **NL**-Hard.
- To prove that a problem P_2 is **NL**-hard, show that there's a log-space reduction from a known **NL**-hard P_1 to P_2 .

Completeness

Definition

A problem is **NL**-complete if it is both **NL**-hard and in **NL**.

Example

PATH is **NL**-complete.

- We already know $PATH \in \mathbf{NL}$.
- Why is it **NL**-hard?

NL-hardness of *PATH*

Let $P \in \mathbf{NL}$. Given a nondeterministic log-space Turing machine M that computes P, we:

- Construct a control-flow graph *G* of all the reachable configurations of *M* for the given input.
- ② Ask if there is a *PATH* from the start configuration s to the accept configuration t^1 .

The transducer needs only log space on the working tape to produce the graph on the output tape.

Thus...

As $PATH \in \mathbf{NL}$ and PATH is \mathbf{NL} -hard, PATH is \mathbf{NL} -complete.

Since $PATH \in \mathbf{P}$, we conclude $\mathbf{L} \subseteq \mathbf{NL} \subseteq \mathbf{P}$.

¹W.l.o.g. we say there is just one accepting configuration.

L vs NL

We hypothesise that we pay an exponential time penalty when we simulate nondeterministic machines with deterministic ones, but what about space?

Note: We don't know whether $\mathbf{NL} \nsubseteq \mathbf{L}$, so it's possible there's no penalty.

Savitch's Theorem

Define a recursive algorithm kpath(s, t, k) that returns true iff there is a path of length k from s to t in a graph G = (V, E).

- If k = 0, return s = t.
- If k = 1, return $(s, t) \in E$.
- If k > 1, for each $u \in V$:
 - If kpath $(s, u, \lfloor \frac{k}{2} \rfloor) \land \text{kpath}(u, t, \lceil \frac{k}{2} \rceil)$, return true.

kpath can compute *PATH* in $\log^2(|G|)$ space, so **NL** \subseteq **L**². In general **NSPACE** $(f(n)) \subseteq SPACE(f^2(n))$.

Certificates

Just as with **NP**, we can also characterise **NL** in terms of a *verifier* for *certificates* (candidate solutions):

Theorem

A problem $P \in \mathbf{NL}$ iff there is a *log-space verifier* for P-certificates.

A log-space verifier has three tapes:

- A input tape that is read-only.
- ② A working tape that is log-bounded.
- A certificate tape that is read-once (left to right).

The size of the certificate we are verifying must be polynomial in the size of the input.

Exercise: Show that this is equivalent to our **NSPACE** definition previously.

PATH NI

Example

A certificate for *PATH* is a list of vertices v_0, v_1, \ldots, v_k forming an acyclic path from s to t in a graph G = (V, E). We can check with a log-space verifier that:

- $s = v_0$
- $v_k = t$
- $(v_j, v_{j+1}) \in E$ for all $0 \le j < k$

We only read the certificate once, left to right, and it suffices to store two nodes in our working tape, so this is $\log \operatorname{space}^a$.

^aNode names can be binary digits.

NL vs coNL

coNL is all problems whose complement is in **NL**.

Immerman-Szelepcsényi Theorem

$$NL = coNL$$

More generally:

$$\mathsf{NSPACE}(f(x)) = \mathsf{coNSPACE}(f(x))$$

Thus:

$$PSPACE = coPSPACE$$

Proof of Immerman-Szelepcsényi

We prove this by showing $\overline{PATH} \in \mathbf{NL}$.

Intuition

Say I want to convince you (a verifier) that in a graph G = (V, E), there is no path from s to t. I can do this by convincing you of the following two statements:

- ① There are exactly $m_{|V|}$ distinct vertices reachable from s by paths of length $\leq |V|$.
- ② The target vertex t is *not* one of those $m_{|V|}$ vertices.

So, what are the certificates?

- For Part 2, we just give a list of $m_{|V|}$ distinct vertices that are not t, along with a certificate for each vertex v in our list that v is reachable from s by paths of length $\leq |V|$
- For Part 1, we do inductive counting...

Inductive Counting

I want to convince you (the verifier) of the following:

Certify this:

There are exactly $m_{|V|}$ distinct vertices reachable from s by paths of length $\leq |V|$.

To do this, I'll make an inductive argument:

Steps

For each k = 0, ..., |V| - 1, I'll show you (the verifier) that:

"if m_k vertices are reachable by paths of length $\leq k$, then m_{k+1} vertices are reachable by paths of length $\leq k+1$."

Sub-certificates

Steps

For each $k=0,\ldots,|V|-1$, I'll show you (the verifier) that: "if m_k vertices are reachable by paths of length $\leq k$, then m_{k+1} vertices are reachable by paths of length $\leq k+1$."

The certificate for each step takes the form of a sub-certificate for each vertex $v \in V$:

- If v is reachable by paths of length $\leq k + 1$, then it is just a path from s to v of length $\leq k + 1$
- If v is not reachable by paths of length $\leq k+1$, then it is a list of m_k distinct vertices that do not have an edge to v, and a certificate for each vertex v' in our list that v' is reachable from s by paths of length $\leq k$.

There should be exactly m_{k+1} "reachable" sub-certificates (our verifier will check this).

Sub-polynomiality

We have a finer-grained notion of reduction now, so we can make distinctions smaller than **P**:

P-Completeness

A problem is **P**-complete iff it is in **P** and all problems in **P** can be log-space reduced to it.

Examples: Emptiness of CFGs, True Boolean Circuit Value, etc.

Logarithmic Hierarchy

We can imagine a *logarithmic hierarchy* like the polynomial hierarchy, i.e. the languages decided by an alternating Turing machine in logarithmic space with a bounded number of alternations. By Immerman-Szelepcsényi, the hierarchy collapses, i.e. $\Sigma_j^{\mathbf{L}} = \mathbf{NL}$ for all j. But for unbounded alternations, $\mathbf{AL} = \mathbf{P}$.