
Introduction to Theoretical Computer Science
Lecture 14: λ-Calculus

Richard Mayr

University of Edinburgh

Semester 1, 2025/2026



Introduction

While Turing was thinking about machines, Alonzo Church was
computing with a programming language – a precursor of Haskell –
called λ-calculus.
We often think of programming languages as methods to program a
computer, but languages can also be thought of as the computer itself.

Comparing models
Church and Turing famously proved that Turing Machines and
λ-calculus are equivalent in computational power.
However, λ-calculus is different from other models in that it is
higher-order: This means that computations (λ-terms) may take other
computations as input. For TMs and RMs, we must work with
encodings to achieve this.



Syntax
λ-calculus computations are expressed as λ-terms:

t ::= x (variables)
| t1 t2 (application)
| λx . t (λ-abstraction)

λ-abstraction
A λ-term (λx . y) can be thought of as a function that, given an input
bound to the variable x , returns the term y .
We will give a formal definition of this in terms of substitution later.

For now, we will extend λ-terms with arithmetic expressions:

(λx . λy . (x + y)÷ 2) 10 20

but this is not fundamental to the computational model. We will
remove this feature later without reducing expressivity.



Higher-order functions
Function application is left associative:

f a b c = ((f a) b) c

λ-abstraction extends as far as possible:

λa. f a b = λa. (f a b)

All functions are unary, like Haskell. Multiple argument functions are
modelled with nested λ-abstractions:

λx . λy . f y x

λ-calculus is higher-order, in that functions may be arguments to
functions themselves:

λf . λg . λx . f (g x)



α-equivalence

What is the difference between these two programs?

(λx . λx . x + x) (λa. λy . y + y)

They are semantically identical, but differ in the choice of bound
variable names. Such expressions are called α-equivalent.

We write e1 ≡α e2 if e1 is α-equivalent to e2. The relation ≡α is an
equivalence relation.
The process of consistently renaming variables that preserves
α-equivalence is called α-renaming or α-conversion.



Substitution

A variable x is free in a term e if x occurs in e but is not bound (by a
λ-abstraction) in e.

Example (Free Variables)
The variable x is free in λy . x + y , but not in λx . λy . x + y .

A substitution, written e[t/x ], is the replacement of all free
occurrences of x in e with the term t.

Example (Substitution on Arithmetic Expressions)

(5× x + 7)
[
y×4/x

]
is the same as (5× (y × 4) + 7).



Problems with substitution

Consider these two α-equivalent expressions.

(λy . y × x + 7) 5

and
(λz . z × x + 7) 5

What happens if you naïvely apply the substitution
[
y×3/x

]
to both

expressions? You get two non-α-equivalent expressions!

(λy . y × (y × 3) + 7) 5

and
(λz . z × (y × 3) + 7) 5

This problem is called capture.



Variable Capture

Capture can occur for a substitution e
[t/x

]
whenever there is a bound

variable in the term e with the same name as a free variable occuring
in t.

Fortunately
It is always possible to avoid capture. Just α-rename the offending
bound variable to an unused name.



β-reduction

The rule to evaluate function applications is called β-reduction:

(λx . t) u 7→β t [u/x ]



β-reduction

β-reduction is a congruence:

(λx . t) u 7→β t [u/x ]

t 7→β t ′

s t 7→β s t ′
s 7→β s ′

s t 7→β s ′ t

t 7→β t ′

λx . t 7→β λx . t ′

This means we can pick any reducible subexpression (called a redex)
and perform β-reduction.
Example:

(λx . λy . f (y x)) 5 (λx . x) 7→β (λy . f (y 5)) (λx . x)
7→β f ((λx . x) 5)
7→β f 5



Confluence
There are often many different ways to reduce the same expression:

(λa. a) ((λy . f y) 5)

(λy . f y) 5

Call-by-name

Evaluate function args
late

(after application)

(λa. a) (f 5)

Call-by-value

Evaluate function args
early

(before application)f 5

The Church-Rosser Theorem
If a term t β-reduces to two terms a and b, then there is a common
term t ′ to which both a and b are β-reducible.



Equivalence

Confluence means we can define another notion of equivalence,
which equates more than α-equivalence. Two terms are
αβ-equivalent, written s ≡αβ t if they β-reduce to α-equivalent terms.

η

There is also another equation that cannot be proven from
β-equivalence alone, called η-reduction:

(λx . f x) 7→η f

Adding this reduction to the system preserves confluence (and
therefore uniqueness of normal forms), so we have a notion of
αβη-equivalence also.



Normal Forms

A term that cannot be reduced further is called a normal form

Divergence
Does every term in λ-calculus have a normal form?

(λx . x x)(λx . x x)

Try to β-reduce this!

Uniqueness of NFs
Does any term in λ-calculus have more than one normal form?
No: consider Church-Rosser.



Making λ-Calculus Usable

In order to demonstrate that λ-calculus is actually a usable
programming language, we will demonstrate how to encode booleans
and natural numbers as λ-terms, along with their operations.

General Idea
We transform a data type into the type of its eliminator. In other
words, we make a function that can serve the same purpose as the
data type at its use sites.



Booleans

How do we use booleans? To choose between two results!

So, a boolean will be a function that, given two arguments, returns the
first one if it is true and the second one if it is false:

True ≡ λa. λb. a
False ≡ λa. λb. b

How do we write an if statement?

If ≡ λc . λt. λe. c t e

Example (Test it out!)
Try β-normalising If True False True.



Natural Numbers
How do we use natural numbers? To do something n times!

So, a natural number will be a function that takes a function f and a
value x , and applies the function f to x that number of times:

Zero ≡ λf . λx . x
One ≡ λf . λx . f x
Two ≡ λf . λx . f (f x)
. . .

How do we write Suc?

Suc ≡ λn. λf . λx . f (n f x)

How do we write Add?

Add ≡ λm.λn. λf . λx . m f (n f x)



Natural Numbers

Example
Try β-normalising Suc One.

Example
Try writing a different λ-term for defining Suc.

Example
Try writing a λ-term for defining Multiply.



A Final Puzzle

Puzzle
Find a λ-term Y such that

Y f 7→?
β

f (Y f )

Y = λf . (λx . f (x x))(λx . f (x x)).
Can be used to define recursive functions, e.g. factorial.


	The -Calculus
	

	Church Encodings

