Introduction to Theoretical Computer Science Lecture 14: λ-Calculus

Richard Mayr

University of Edinburgh

Semester 1, 2025/2026

Introduction

While Turing was thinking about machines, Alonzo Church was computing with a programming language – a precursor of Haskell – called λ -calculus.

We often think of programming languages as methods to program a computer, but languages can also be thought of as the computer itself.

Comparing models

Church and Turing famously proved that Turing Machines and λ -calculus are equivalent in computational power. However, λ -calculus is different from other models in that it is *higher-order*: This means that computations (λ -terms) may take other computations as input. For TMs and RMs, we must work with encodings to achieve this.

Syntax

 λ -calculus computations are expressed as λ -terms:

$$\begin{array}{ccccc} t & ::= & x & (variables) \\ & \mid & t_1 \ t_2 & (application) \\ & \mid & \lambda x. \ t & (\lambda \text{-abstraction}) \end{array}$$

λ-abstraction

A λ -term (λx . y) can be thought of as a function that, given an input bound to the variable x, returns the term y.

We will give a formal definition of this in terms of substitution later.

For now, we will extend λ -terms with arithmetic expressions:

$$(\lambda x. \lambda y. (x + y) \div 2) 10 20$$

but this is not fundamental to the computational model. We will remove this feature later without reducing expressivity.

Higher-order functions

Function application is left associative:

$$f a b c = ((f a) b) c$$

 λ -abstraction extends as far as possible:

$$\lambda a. f a b = \lambda a. (f a b)$$

All functions are unary, like Haskell. Multiple argument functions are modelled with nested λ -abstractions:

$$\lambda x$$
. λy . $f y x$

 λ -calculus is *higher-order*, in that functions may be arguments to functions themselves:

$$\lambda f. \lambda g. \lambda x. f(gx)$$

α-equivalence

What is the difference between these two programs?

$$(\lambda x. \lambda x. x + x)$$
 $(\lambda a. \lambda y. y + y)$

They are semantically identical, but differ in the choice of bound variable names. Such expressions are called α -equivalent.

We write $e_1 \equiv_{\alpha} e_2$ if e_1 is α -equivalent to e_2 . The relation \equiv_{α} is an equivalence relation.

The process of consistently renaming variables that preserves α -equivalence is called α -renaming or α -conversion.

Substitution

A variable x is <u>free</u> in a term e if x occurs in e but is not <u>bound</u> (by a λ -abstraction) in e.

Example (Free Variables)

The variable x is free in λy . x + y, but not in λx . λy . x + y.

A substitution, written e[t/x], is the replacement of all free occurrences of x in e with the term t.

Example (Substitution on Arithmetic Expressions)

$$(5 \times x + 7)$$
 $\begin{bmatrix} y \times 4/x \end{bmatrix}$ is the same as $(5 \times (y \times 4) + 7)$.

Problems with substitution

Consider these two α -equivalent expressions.

$$(\lambda y.\ y \times x + 7)\ 5$$

and

$$(\lambda z. z \times x + 7) 5$$

What happens if you naïvely apply the substitution $\left[\frac{y\times 3}{x}\right]$ to both expressions? You get two non- α -equivalent expressions!

$$(\lambda y.\ y\times(y\times3)+7)\ 5$$

and

$$(\lambda z.\ z\times(y\times3)+7)\ 5$$

This problem is called *capture*.

Variable Capture

Capture can occur for a substitution $e^{t/x}$ whenever there is a bound variable in the term e with the same name as a free variable occuring in t.

Fortunately

It is always possible to avoid capture. Just α -rename the offending bound variable to an unused name.

β-reduction

The rule to evaluate function applications is called β -reduction:

$$(\lambda x. t) u \mapsto_{\beta} t \begin{bmatrix} u/x \end{bmatrix}$$

β-reduction

 β -reduction is a *congruence*:

$$\frac{\overline{(\lambda x. t) u \mapsto_{\beta} t [u/x]}}{s t \mapsto_{\beta} s t'} \frac{s \mapsto_{\beta} s'}{s t \mapsto_{\beta} s' t} \frac{t \mapsto_{\beta} t'}{\lambda x. t \mapsto_{\beta} \lambda x. t'}$$

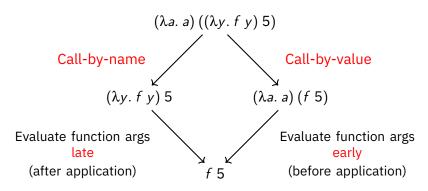
This means we can pick any reducible subexpression (called a redex) and perform β -reduction.

Example:

$$(\lambda x. \lambda y. f(y x)) 5 (\lambda x. x) \mapsto_{\beta} (\lambda y. f(y 5)) (\lambda x. x)$$
$$\mapsto_{\beta} f((\lambda x. x) 5)$$
$$\mapsto_{\beta} f 5$$

Confluence

There are often many different ways to reduce the same expression:



The Church-Rosser Theorem

If a term t β -reduces to two terms a and b, then there is a common term t' to which both a and b are β -reducible.

Equivalence

Confluence means we can define another notion of equivalence, which equates more than α -equivalence. Two terms are $\alpha\beta$ -equivalent, written $s\equiv_{\alpha\beta}t$ if they β -reduce to α -equivalent terms.

η

There is also another equation that cannot be proven from β -equivalence alone, called η -reduction:

$$(\lambda x. f x) \mapsto_{\mathbf{n}} f$$

Adding this reduction to the system preserves confluence (and therefore uniqueness of normal forms), so we have a notion of $\alpha\beta\eta$ -equivalence also.

Normal Forms

A term that cannot be reduced further is called a *normal form*

Divergence

Does every term in λ -calculus have a normal form?

$$(\lambda x. x x)(\lambda x. x x)$$

Try to β-reduce this!

Uniqueness of NFs

Does any term in λ -calculus have more than one normal form?

No: consider Church-Rosser.

Making λ -Calculus Usable

In order to demonstrate that λ -calculus is actually a usable programming language, we will demonstrate how to encode booleans and natural numbers as λ -terms, along with their operations.

General Idea

We transform a data type into the type of its *eliminator*. In other words, we make a function that can serve the same purpose as the data type at its use sites.

Booleans

How do we use booleans? To choose between two results!

So, a boolean will be a function that, given two arguments, returns the first one if it is true and the second one if it is false:

True
$$\equiv \lambda a. \lambda b. a$$

False $\equiv \lambda a. \lambda b. b$

How do we write an if statement?

If
$$\equiv \lambda c. \lambda t. \lambda e. c t e$$

Example (Test it out!)

Try β -normalising If True False True.

Natural Numbers

How do we use natural numbers? To do something n times!

So, a natural number will be a function that takes a function f and a value x, and applies the function f to x that number of times:

Zero
$$\equiv \lambda f. \lambda x. x$$

One $\equiv \lambda f. \lambda x. f x$
Two $\equiv \lambda f. \lambda x. f (f x)$
...

How do we write Suc?

Suc
$$\equiv \lambda n. \lambda f. \lambda x. f(n f x)$$

How do we write Add?

Add
$$\equiv \lambda m.\lambda n. \lambda f. \lambda x. m f (n f x)$$

Natural Numbers

Example

Try β -normalising Suc One.

Example

Try writing a different $\lambda\text{-term}$ for defining Suc.

Example

Try writing a λ -term for defining Multiply.

A Final Puzzle

Puzzle

Find a λ -term $\mathcal Y$ such that

$$\mathcal{Y} f \mapsto_{\beta}^{\star} f(\mathcal{Y} f)$$

 $\mathcal{Y} = \lambda f. (\lambda x. f(x x))(\lambda x. f(x x)).$

Can be used to define recursive functions, e.g. factorial.