Introduction to Theoretical Computer Science
Lecture 14: A-Calculus

Richard Mayr
University of Edinburgh

Semester 1, 2025/2026

Introduction

While Turing was thinking about machines, Alonzo Church was
computing with a programming language — a precursor of Haskell -
called A-calculus.

We often think of programming languages as methods to program a
computer, but languages can also be thought of as the computer itself.

Comparing models

Church and Turing famously proved that Turing Machines and
A-calculus are equivalent in computational power.

However, A-calculus is different from other models in that it is
higher-order: This means that computations (A-terms) may take other
computations as input. For TMs and RMs, we must work with
encodings to achieve this.

Syntax

A-calculus computations are expressed as A-terms:

t o= x (variables)
| t1t (application)
|

Ax.t (h-abstraction)

A-abstraction

A A-term (Ax. y) can be thought of as a function that, given an input
bound to the variable x, returns the term y.
We will give a formal definition of this in terms of substitution later.

For now, we will extend A-terms with arithmetic expressions:
(Ax.Ay. (x +y)+2)10 20

but this is not fundamental to the computational model. We will
remove this feature later without reducing expressivity.

Higher-order functions
Function application is left associative:
fabc = ((fa)b)c
A-abstraction extends as far as possible:
Aa.fab = Aa. (fab)

All functions are unary, like Haskell. Multiple argument functions are
modelled with nested A-abstractions:

Ax.Ay. fyx

A-calculus is higher-order, in that functions may be arguments to
functions themselves:

A Ag. Ax. f (g x)

o-equivalence

What is the difference between these two programs?

(. Ax. x+x) (Aa.hy.y +y)

They are semantically identical, but differ in the choice of bound
variable names. Such expressions are called a-equivalent.

We write eq =¢ e if e1 is a-equivalent to e,. The relation =¢ is an
equivalence relation.

The process of consistently renaming variables that preserves
a-equivalence is called a-renaming or a-conversion.

Substitution

A variable x is free in a term e if x occurs in e but is not bound (by a
A-abstraction) in e.

Example (Free Variables)
The variable x is free in Ay. x + y, but not in Ax. Ay. x + y.

A substitution, written e[%/], is the replacement of all free
occurrences of x in e with the term t.

Example (Substitution on Arithmetic Expressions)

(5 % x +7) [YXA/X} is the same as (5 x (y x 4) + 7).

Problems with substitution

Consider these two a-equivalent expressions.

(Ay.y xx+7)5

and
(Az.zxx+7)5

What happens if you naively apply the substitution {YX3/X] to both
expressions? You get two non-a-equivalent expressions!
(Ay.y x(y x3)+7)5

and
(Az.zx(yx3)+7)5

This problem is called capture.

Variable Capture

Capture can occur for a substitution e [*/x] whenever there is a bound

variable in the term e with the same name as a free variable occuring
in t.

Fortunately

It is always possible to avoid capture. Just a-rename the offending
bound variable to an unused name.

B-reduction

The rule to evaluate function applications is called B-reduction:

(Ax. t) u =g t[Y/x]

B-reduction

B-reduction is a congruence:

(Ax. t) u—p t[Y/x]

t g t sr—>Bs/ t =g t/

st|—>l35t/ str—>ﬁs’t Kx.t»—mkx.t'

This means we can pick any reducible subexpression (called a redex)
and perform B-reduction.
Example:

(M. dy. £ (y x)) 5 (Ax.x) =g (Ay.f(y5)) (hx. x)
=g f((Ax.x)5)
i—>B f5

Confluence

There are often many different ways to reduce the same expression:

(Aa. a) (Ay.f y)5)

Call-by-name / \ Call-by-value

(Ay.fy)5 (Aa. a) (f 5)
Evaluate function args Evaluate function args
late early
(after application) f5 (before application)

The Church-Rosser Theorem

If aterm t B-reduces to two terms a and b, then there is a common
term t’' to which both a and b are B-reducible.

Equivalence

Confluence means we can define another notion of equivalence,
which equates more than a-equivalence. Two terms are
ap-equivalent, written s =4 t if they B-reduce to a-equivalent terms.

n
There is also another equation that cannot be proven from
B-equivalence alone, called n-reduction:

(Ax. f x) = f

Adding this reduction to the system preserves confluence (and
therefore uniqueness of normal forms), so we have a notion of
afn-equivalence also.

Normal Forms

A term that cannot be reduced further is called a normal form

Divergence
Does every term in A-calculus have a normal form?

(Ax. x x)(Ax. x x)
Try to B-reduce this!

Uniqueness of NFs

Does any term in A-calculus have more than one normal form?
No: consider Church-Rosser.

Making A-Calculus Usable

In order to demonstrate that A-calculus is actually a usable
programming language, we will demonstrate how to encode booleans
and natural numbers as A-terms, along with their operations.

General Idea

We transform a data type into the type of its eliminator. In other
words, we make a function that can serve the same purpose as the
data type at its use sites.

Booleans

How do we use booleans? To choose between two results!

So, a boolean will be a function that, given two arguments, returns the
first one if it is true and the second one if it is false:

True = Aa.Ab.a
False = Aa.Ab. b

How do we write an if statement?

If = Ac.At.he.cte

Example (Test it out!)
Try B-normalising If True False True.

Natural Numbers

How do we use natural numbers? To do something n times!

So, a natural number will be a function that takes a function f and a
value x, and applies the function f to x that number of times:

Zero = Af.Ax.x
One = AM.Ax.fx
Two = Af.Ax.f (f x)

How do we write Suc?

Suc = An.Af.Ax.f(nf x)

How do we write Add?

Add = AmAn Af.Ax.mf (nf x)

Natural Numbers

Example
Try B-normalising Suc One.

Example
Try writing a different A-term for defining Suc.

Example
Try writing a A-term for defining Multiply.

A Final Puzzle

Puzzle
Find a A-term) such that

YV oeh (V)

Y =Af. (Ax. f(x x))(Ax. f(x x)).
Can be used to define recursive functions, e.g. factorial.

	The -Calculus
	

	Church Encodings

