
Introduction to Theoretical Computer Science
Lecture 16: Denotational Semantics

Richard Mayr

University of Edinburgh

Semester 1, 2025/2026

Semantics

This lecture concerns the topic of semantics, which is a mathematical
description of the meaning of programs.

Why learn this?
We can’t prove anything about a computer program without first
giving it a semantics.

Semantics

Semantics can be specified in many ways:
1 Denotational Semantics is the compositional construction of a

mathematical object for each form of syntax. MCS
2 Axiomatic Semantics is the construction of a proof calculus to

allow correctness of a program to be verified. AR, FV
3 Operational Semantics is the construction of a

program-evaluating state machine or transition system. TSPL,
EPL, MCS

In this lecture
We focus mostly on denotational semantics as MCS’s treatment is
very informal and no other course touches it.

Denotational Semantics

At its heart, it’s quite simple:

J·K : Program→ Semantics

More specifically, we define a function J·K which maps syntax into
(mathematical) models.

Desideratum
We want this semantic function to be compositional: The semantics of
a compound expression should be made from the semantics of its
components.

Arithmetic Expressions

J·KE : E → Σ→ Z

Our denotation for arithmetic expressions is functions from states
(mapping from variables to their values) to values.

JnKE = λσ. n
JxKE = λσ. σ(x)
Je1 + e2KE = λσ. Je1KEσ + Je2KEσ

Je1 * e2KE = λσ. Je1KEσ× Je2KEσ

Jlet x = e1 in e2KE = λσ. Je2KE
(

σ[x := Je1KEσ]
)

Where σ[x := n] is a new state just like σ except the variable x now
maps to n.

Note: From this point onwards I’ll assume all standard arithmetic expressions are in E

Boolean Expressions

J·KB : B → P(Σ)

Our denotation for a boolean expression is a set of states that satisfy
the predicate represented by the expression.

Je1 == e2KB = {σ | Je1KEσ = Je2KEσ}
Je1 <= e2KB = {σ | Je1KEσ ≤ Je2KEσ}
Je1 && e2KB = Je1KB ∩ Je2KB

Je1 || e2KB = Je1KB ∪ Je2KB

J! e1KB = Σ \ Je1KB

Note: C notation is used here to distinguish syntax from semantics, but from this point onwards
I’ll assume all standard boolean expressions are in B

Imperative Programs

We are going to give semantics to non-deterministic imperative
programs. Because of non-determinism, our models are relations not
functions:

J·K : I → P(Σ× Σ)

(σ1,σ2) ∈ JPK means that executing P on an initial state σ1 may result
in the final state σ2.

Assignment statement
An assignment x := e simply assigns the value of the expression e to
the variable x :

Jx := eK =
{
(σi ,σf) | σf = σi

[
x 7→ JeKE (σi)

]}

More Statements

Sequencing
The semicolon, or sequential composition operator, is the operator
that lets us first run P , and then run Q.

JP;QK = JPK ; JQK

where ; is forward-composition of relations:

X ; Y =
{
(σi ,σf) | ∃σm. (σi ,σm) ∈ X ∧ (σm,σf) ∈ Y

}
Example (Swap)

({a 7→ 4, b 7→ 8, . . . }, {a 7→ 8, b 7→ 4, . . . })
∈ Jx := a; a := b; b := xK

More Statements

Choice and Guards
An a nondeterministic choice P + Q means that all observations of P
and all observations of Q are possible:

JP + QK = JPK ∪ JQK

A boolean expression guard ϕ (in B) doesn’t change the state, but only
those observations that satisfy ϕ succeed:

JϕK =
{
(σ,σ) | σ ∈ JϕKB

}
Using these ingredients, we can recover if-statements:

if ϕ then P else Q fi ' (ϕ;P) + (¬ϕ;Q)

Loops

the skip statement does nothing: JskipK = I = {(σ,σ) | σ ∈ Σ}

Star
The Kleene star P? is the operator that runs loop body P for a
nondeterministic amount of times. The semantics are the smallest
solution to this recursive equation:

JP?K = I ∪ JPK ; JP?K (i.e. P? ' skip + (P;P?))

We will show that this is the same as:

JP?K =
⋃

i∈N0
JPKi

Where superscripting is self-composition: R0 = I
Rn+1 = R ; Rn

We can recover while loops: while g do P od ' (g ;P)?;¬g

Great Scott!
Rewriting our equation slightly:

JP?K = f (JP?K) where f (X) = I ∪ JPK ; X

A solution to this equation is a fixed point of the function f , i.e., a value
x such that f (x) = x

1 Why does this equation have a solution?
2 If it has more than one solution, which one do we pick?

ω-cpos
We’ll put our models into a partial order v, read “approximates”,
which is an ω-complete partial order:

1 Pointed: it has a least element ⊥ which approximates everything.
2 ω-chain-complete: For every countable ascending sequence

f0 v f1 v f2 . . . we have a least upper bound, written sup f or⊔
n∈N fn.

Examples of cpos

(P(S),⊆)is a cpo: the LUB of a chain is just the union of the chain.
(N,≤) is not a cpo: 1 ≤ 2 ≤ 3 ≤ . . . has no LUB.
(N ∪ {∞},≤) is a cpo, as∞ is the LUB of any non-repeating chain.
(S ,=)is a discrete domain, which is a cpo.
(S⊥,v), i.e., the set S extended with a single least element ⊥is a
flat domain, which is a cpo.

In our case
Our cpo is (P(Σ× Σ),⊆).

The least element ⊥ = ∅
The least upper bound of a chain f0 ⊆ f1 ⊆ f 2 . . . is just

⋃
i∈N fi

Climbing Chains
Recalling our semantics for the star operator, we want to show that
the least fixed point of a function f on our cpo is the least upper
bound of the ascending Kleene chain:

⊥ v f (⊥) v f (f (⊥)) v f 3(⊥) v f 4(⊥) v · · ·

But!
This chain doesn’t exist for some f ! Consider this f on the flat domain
(N⊥,v):

f (x) =


1 if x = ⊥
⊥ if x = 1
0 otherwise

Requiring that f is monotone fixes this problem, i.e.
a ≤ b =⇒ f (a) ≤ f (b). Why?

Monotone isn’t enough

Consider this function f defined over a cpo (R ∪ {−∞,∞},≤):

f (x) =

{
tan−1 x if x < 0
1 otherwise

Note that this function is not continuous at 0.

Oh no
It has a fixed point of 1, but the chain approaches 0:

f (−∞) = −π

2
f (−π

2) = −1
f (−1) ≈ −0.78

But f (0) = 1 — the least upper bound of the ascending Kleene chain is
not the same as the least fixed point!

Continuity

Definition
In a cpo (S ,v), a function f : S → S is (Scott)-continuous if, for every
chain x0 v x1 v x2 v . . . , f preserves the least upper bound operator:⊔

n∈N
f (xn) = f

(⊔
n∈N

xn
)

Theorem
Every Scott-continuous function is monotone. Why?

Requiring Scott-continuity instead of just monotonicity gives us the
Kleene fixed point theorem...

The Kleene fixed point theorem

Theorem
Let (S ,v) be a cpo and f : S → S be a Scott-continuous function.
Then the lub of the Kleene ascending chain

⊔
n∈N f n(⊥) is the least

fixed point of f .

Proof it is a fixed point:
f (
⊔

n∈N f n(⊥)) =
⊔

n∈N f (f n(⊥)) (continuity)

=
⊔

n∈N f n+1(⊥)

=
⊔

n=1,2... f
n(⊥) (reindexing)

= ⊥ t
⊔

n=1,2... f
n(⊥)

=
⊔

n∈N f n(⊥)

Proof of the FPT

Proof it is the least fixed point:

Let y be a fixed point of f . We know that ⊥ v y by definition of ⊥.
Taking f of both sides, we get f (⊥) v y . We can continue this
inductively and thus we know that, for all n ∈ N, f n(⊥) v y . Because y
is an upper bound of the Kleene ascending chain, it must also be at
least as large as the lub of that chain.

Bringing it back to semantics

For our programming language, our cpo is (P(Σ× Σ),⊆):
The least element ⊥ = ∅
The least upper bound of a chain f0 ⊆ f1 ⊆ f 2 . . . is just

⋃
i∈N fi

All of our composite operators are Scott-continuous:

JP + QK = JPK ∪ JQK JP;QK = JPK ; JQK

Thus, we know from the fixed point theorem that least solutions to our
recursive equations always exist and they can be found by iteratively
applying the function until we find a fixed point.

Non-termination

Consider a program that may loop forever, such as (x := x + 1)?.

Problem
This possibility is not captured in our semantics!

Programs that definitely loop forever, like (x := x + 1)?; x = 0 have
identical semantics to programs that always fail like 1 = 2.

Key idea
Add a special value, confusingly also written ⊥, which represents
non-terminating computations. Our models would now be P(Σ× Σ⊥)
where Σ⊥ is either a state or the special “loop forever” value.

Representing non-termination

The “loop forever” value must show up in the least element of the
cpo. Why?
If I have a recursive equation JRK = JRK, this ought to represent
looping forever.

Problem
Our ordering says the model is “greater” when we remove ⊥, but
“smaller” when we remove anything else, and vice versa.

It’s quite tricky to define this ordering such that it is a cpo and such
that our language operations are still continuous.

Further reading
Plotkin resolved this with his Powerdomain construction, which gives
a general treatment of non-determinism such that any cpo can be
lifted to a non-deterministic context.

Common Theorems

It is typical to define both operational and denotational models for the
same language and then prove theorems that relate them.

Definition
Let (σ,P) ⇓ σ′ be an operational semantics for our language. It says
that, starting in state σ, evaluating the program P on a machine
results in σ′.

Soundness If (σ,P) ⇓ σ′ then (σ,σ′) ∈ JPK
Adequacy If (σ,σ′) ∈ JPK then (σ,P) ⇓ σ′

Full Abstraction JPK = JQK iff for all contexts C and states σ and
σ′, (σ,C [P]) ⇓ σ′ ⇔ (σ,C [Q]) ⇓ σ′

The first two are common. The last one is hard.

More on denotations

This is just the tip of the iceberg in Denotational Semantics.
Effectful programs use Kleisli categories (monads) for their
domain
Categorical semantics which use structures from category theory
for denotations.
Game semantics which use games as denotations.
Probabilistic powerdomains and quasi-Borel spaces for
probablistic programs.
Concurrency semantics using traces, transition systems, event
structures, Petri nets and so on. MCS

	Non-recursive semantics
	A programming language
	Domain theory

