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Informative Examples

Consider the following two binary strings:

Example
A = 01010101010101010101010101010101010101
B = 11100111100000111011100001111001111001

Which of A and B contains more information?

Applying Compression
The simplest compression algorithm in the world is run-length
encoding. Applying that gives us:

A = gMietdte-lter et ltet et .

B = 130%21%0%1301130%1%021%021
Now B is shorter! But a smarter compression algorithm could
represent A as [01]17.




Minimal Length Descriptions

Definition

A description of a binary string s is itself a binary string (M, w)
encoding a pair of Turing machine M and input w, such that when M is
executed on w it will output s.

One subtlety is that we cannot just use any pairing function (-, -) here,
but instead must use one that produces the shortest possible strings.

Pairing
We define (M, w) to be the string "M w, that is, the binary encoding of

the machine M prepended to the string w. The encoding "M is
basically standard, but with some kind of delimiter (see later).




Kolmogorov Complexity

Definition
The descriptive complexity K(s) of a string s is the length of the

minimal description of s, i.e., the length of the shortest string encoding
(M, w) such that the machine M run on input w produces s.

This definition is relatively robust with respect to the type and
encoding of our machine M: it differs only by a constant factor.

Theorem
de.V¥s. K(s) < |s|+ ¢

Proof: Consider the Turing machine M that immediately halts. Our ¢
can just be the length of "M™.




Some Theorems

Given a string s, how much information has ss relative to s?

Theorem

The string ss has not much more information than s:
dc.Vs. K(ss) < K(s)+ ¢

Proof: Consider the machine M that takes as input (N, w), runs N on
w. Once N outputs the string s, M outputs ss.

Let d be the minimal description of s, then a description of ssis (M, d),
whose length is K(s) + c.
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Returning to Pairing
What’s K(xy) for strings x, y? Is it < K(x) + K(y) + ¢?

No

We can’t just concatenate descriptions, as we need to know
unambiguously when the description of x ends and the description of
y begins.

So: The length of a pair (x, y) depends on our pairing method.

Sipser’s solution
Double every bit in x, and use 01 as a delimiter. Then:

K(xy) <2K(x) + K(y) + ¢

By first storing the length of the desc. of x with doubled bits:

K(xy) < 2loga(K(x)) + K(x) + K(y) + ¢



Compressibility

Definition

A string s is incompressible if K(s) > |s|.

Intuitively, these are strings s that can only be described by the
program “print s”.

Theorem

Incompressible strings of every length exist.
Proof: There are 2" binary strings of length n. The number of
descriptions shorter than n is at most:

n—1 )
Z 2f —2n _q
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Thus there is at least one string not described by any of these.




Tiny fractions

There is at least one incompressible string of any size.

In fact
The vast majority of strings are incompressible.

Theorem

The fraction of strings of size n that are generated by descriptions
smaller than m < nis at most 2™~ ",

Proof: There are 2" strings of size n, and at most 2™ — 1 descriptions
smaller than m. Even if every one of these descriptions produces a
string of size n, at most a fraction:
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of strings of size n can be computed by these descriptions.



Example

Example

Consider a string of eight million bits (roughly 1MB). Assuming all
strings are equally likely, what’s the probability that this string could
be compressed by at least 0.01%?

Solution: A compression of 0.01% would mean a description with
7920000 bits, so at most a fraction

27920000—-8000000 _ »—800

of strings of size 1MB can be compressed by 0.01%.

Compare

Pick one of the 200 billion galaxies in the observable universe, pick
one of its billion stars, pick one of its atoms, then pick one of the
protons of that atom. The chances that you and your neighbour
guessed the same proton is roughly 2272,



What’s going on?

We have seen in our use of computers that many files we use every
day (images, videos, documents) are extremely compressible.

Why?

Humans are not interested in random noise.

Incompressible strings are also called random, and descriptive
complexity is proportional to entropy.

Similarly, the vast majority of functions are uncomputable, but almost
all functions we care about are computable.



Universal Probability

Assume that the complete works of Shakespeare is one million bits
longl. The probability that a monkey typing at a typewriter produces
the complete works of Shakespeare is about:
—1000000
Ptypewriter ~ 2

If the monkey is at a computer, however, we only need it to input a
program that will produce the works of Shakespeare:

Pcomputer ~ K(Shakespeare)

Suppose that K(Shakespeare) = 250000 bits, then the monkey is
2750000 times more likely to produce the works of Shakespeare on a
computer!

Upshot: Random input is more interesting to a computer than to a
typewriter.

1This is a massive underestimate. It is actually around 5MB.



Berry’s Paradox

Is the set of incompressible strings decidable?

Theorem

No. Assume that it is decidable. Then we could write a machine M
that, given a number n as input computes:

fors e {0,1}":
if Isincompressible(s) then
output s; halt

Now (M, n) is a description of an incompressible string of size n, but
the length of (M, n) is just "M ™ (a constant) + log, n. We have a
paradox! Thus the set of incompressible strings is not decidable.




Berry’s Paradox
Is the function K computable?

Theorem

No, by the same reasoning. Assume that K is computable. Then we
could write a machine M that, given w, computes:

fori e N:
fors c {0,1}' :
if K(s) > |(M, w)| then
output s; halt

In English, this is essentially:

“Output the shortest string which can only be described by programs
bigger than this one”.

This is a paradox! Thus K is not computable.

We could also do a proof by reduction from the previous incompressibility problem.




One last Theorem

Theorem
Any computably enumerable set of incompressible strings is finite. J

Proof: Let | = {x | K(x) > |x|}. Assume that S is a computably
enumerable infinite subset of /.

Define h(n) = first enumerated string in S of length > n
Then, his computable by a machine M.

We know:
@ K(h(n)) > |h(n)| > n by the definition of /.
o K(h(n)) < |(M,n)| < logy n+ ¢
This is a contradiction as n > logy n + ¢ for large enough n.
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