
Introduction to Theoretical Computer Science
Lecture 9 [bonus, not examinable]: Arithmetical Hierarchy

Dr. Richard Mayr

University of Edinburgh

Semester 1, 2025/2026

What we have so far

semidecidable H co-semidecidableL

decidable

UH?

Sigmas

We shall introduce notation to describe decision problems.

Sigma
The set Σ0

1 describes all problems that can be phrased as
{y | ∃x ∈ N. R(x , y)}, where R is a decidable predicate.
We can replace the N with any c.e. set (i.e. type 0).

If a problem P ∈ Σ0
1 then P is semidecidable. Why?

(we can enumerate all x and test R(x , y), halting if true)
If a problem P is semidecidable then P ∈ Σ0

1. Why?

Definition: Kleene’s T Predicate
T (pMq, x , y) = M accepts x in y steps.

If a machine M semi-decides P , then P = {x | ∃y .T (pMq, x , y)}

Pis

Pi
The set Π0

1 describes all problems that can be phrased as
{y | ∀x ∈ N. R(x , y)}, where R is a decidable predicate.
We can replace the N with any c.e. set (i.e. type 0).

Σ0
1 = {x | ∃y . R(x , y)}

= {x | ¬∃y . R(x , y)}
= {x | ∀y . ¬R(x , y)}
= Π0

1

As Σ0
1 is the set of semidecidable problems, Π0

1 is the set of
co-semidecidable problems.

Example (Empty)
Empty = {pMq | ∀x .∀y . ¬T (pMq, x , y)} has two quantifiers.

Deltas

Delta
The set ∆0

1 describes the intersection of Σ0
1 and Π0

1.

From our characterisations of Σ0
1 and Π0

1, we know this describes the
set of decidable problems.

Relabeling

Σ0
1 Π0

1

∆0
1

H L

Moving Higher

Definitions
Σ0

2 is the set of all problems of form {x | ∃y .∀z . R(x , y , z)}.
Π0

2 is the set of all problems of form {x | ∀y .∃z . R(x , y , z)}.
∆0

2 = Σ0
2 ∩Π0

2

Note that Σ0
1,Π0

1,∆0
1 are all⊆ ∆0

2 (and therefore⊆ Σ0
2 and⊆ Π0

2). Why?
(our R can simply “ignore” one of the parameters)

Example (Uniform Halting)
UH can be expressed as {pMq | ∀w . ∃t.T (M,w , t)}.
Therefore UH ∈ Π0

2.

The Arithmetical Hierarchy

∆0
1

Σ0
1 Π0

1

∆0
2

Σ0
2 Π0

2

An equivalent characterisation
We can define in terms of oracles:

∆0
2 is all problems that are

decidable by some TM/RM with
an oracle for some
(co-)semi-decidable problem.
Σ0

2 are all semidecidable
problems by such a TM/RM.
Π0

2 are all co-semidecidable
problems by such a TM/RM.

Building up

In general, for any n > 1:
∆0

n is all problems that are decidable by some TM/RM with an
oracle for some problem ∈ Σ0

n−1.

Σ0
n are all semidecidable problems by such a TM/RM.

Π0
n are all co-semidecidable problems by such a TM/RM.

Alternation
Equivalently Σ0

n are all problems that can be phrased as some
alternation of quantifiers, starting with ∃:

{w | ∃x1.∀x2.∃x3.∀x4. . . . xn. R(w , x1, . . . , xn)}

Π0
n starts instead with ∀:

{w | ∀x1.∃x2.∀x3.∃x4. . . . xn. R(w , x1, . . . , xn)}

Games

Alternation of formulae are connected fundamentally with games.
When proving an ∃x , we have a choice of what x is. When proving
a ∀x , our opponent has a choice of what x is.

Example (Pumping for CFLs)
If L is a CFL then: ∃p.∀w ∈ L with |w | ≥ p.∃uvxyz = w .∀i .|w | ≥
p ∧ |vxy | ≤ p ∧ vy 6= ε ∧ uv ixy iz ∈ L. This statement is in Σ0

4. Thus the
opposite (proving non-context-freeness of L via pumping lemma) is in
Π0

4.

Limitations of Oracles

Theorem
The arithmetic hierarchy is strict. That is, the nth level contains a
language not in any level below n.

Note: H is in level 1 but not 0. Consider:

H2 = {〈pMq, x〉 | M, a machine with oracle for H, halts on x}
H3 = {〈pMq, x〉 | M, a machine with oracle for H2, halts on x}
. . .
Hn = {〈pMq, x〉 | M, a machine with oracle for Hn−1, halts on x}

Each of these Hk-oracle machines cannot decide Hk or higher. And,
Hk ∈ Σ0

k .

	Arithmetical Hierarchy

