Programming Data Science at Scale

Lecture 5: Sparse Processing

Amir Noohi

University of Edinburgh

October 16, 2025

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025

Today's Agenda (105 mins)

Part 1: Sparse Data Structures &

Algorithms (60 mins) Part 2: Distributed Sparse
e Motivation: Where is sparse Processing (45 mins)
data? @ Recap: RDDs & Key-Value
@ Data Structures: COO, CSR, Operations
CSC, SELL @ Sparse Primitives in MLIib
e COO Optimization Techniques o SpGEMM Challenge &
@ SpMV: Problem & Solutions High-Level Solution
@ Performance Analysis & o Next Week Preview
Scalability

Goal: Master sparse data structures and distributed algorithms for
large-scale sparse matrix operations.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025

Motivation: The World is Mostly Empty

The Ubiquity of Sparsity

In big data, we often care more about what isn’t there than what is. Most

data points in high-dimensional spaces are zero.

Natural Language
Processing

Vocabulary: 170K words

Doc uses 50 words
99.97% sparse

Amir Noohi (University of Edinburgh)

Recommender
Systems

100K users x 50K movies

User rates 20 movies
99.96% sparse

Programming Data Science at Scale

Social Network

3 billion Facebook users

‘@

@ Yﬂ‘l'l

User has 338 friends
99.99999% sparse

October 16, 2025

The Problem with Dense Matrices

Imagine a recommender system for a small online store:
@ 100,000 users
e 50,000 items

A dense matrix representation (100,000 x 50,000) would require:
e 10° x 5 x 10* =5 x 10 entries.

e Assuming 8 bytes per entry (double): 5 x 10° x 8 bytes = 40 GB of
RAM.

What if each user only rated 20 items?

o Non-zero entries: 100,000 users x 20 ratings = 2,000, 000

o Sparsity: 1 — giigg = 09.96%

@ 99.96% of the 40 GB is wasted on storing zeros!

Solution: Store only the non-zero values and their locations.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025

Data Structure 1: Coordinate List (COO)

The simplest approach: a list of ‘(row, column, value)' triplets.

0 1 2 3 0 1 2 3 4 5 6 7
Row |
0 [E0 INDICES 8 Le 818 |E 8 ‘
1 3.0
2 3 4 5 6 7
COLUMN |
2 1 0 1 1 2 3
INDICES |
3[40 50 '
| 2 3 4 5 6 7
a 60 7.0 80 VALUES 30 40 50 60 70 80 ‘

Pros & Cons

+ Excellent for building a matrix. Easy to append new non-zero
entries.

- Terrible for computation. To find all elements in a row, you must
scan the entire list.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025

COO: Visual Examples

Example 1: Identity Matrix

44 ldentity Matrix COO Representation:

Row Col Value

0 0 1.0
1 1 1.0 Storage: 4 entries
2 2 1.0
3 3 1.0
O;sl,yo/f :;;,rfl instead of 16!

Example 2: Checkerboard Pattern

Pattern: Only squares where (i+]) is even have

B values!
|| @ 18 entries instead of 36
6x6 Checkerboard @ Perfect for game boards, image processing

50% sparse

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025

COO Optimization Techniques

Technique 1: Row-Major Sorting

Before Sorting: After Row-Major Sorting:
Row Col Value Row Col Value

2 1 7 0 2 5

0 2 5 1 0 9

1 0 9 1 3 2

1 3 2 2 1 7

Benefit: Better cache locality, faster access patterns!

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025

Memory Layout Optimization

Technique 2: Memory Layout Optimization

Structure of Arrays (SoA):
@ Store all rows together, then all columns, then all values

@ Better for vectorized operations on modern CPUs

Array of Structures (AoS):
@ Store (row, col, val) triplets together

@ Better for sequential access patterns

Hybrid Approach:
@ Use SoA for better vectorization in modern CPUs

@ Switch between formats based on operation type

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025

Advanced COO Optimizations

Technique 3: Block-Based COO
. Block COO: Group entries by blocks

. @ Enables vectorized operations

Block structure

@ Better cache utilization

@ Used in high-performance libraries

Technique 4: Compressed COO (COO-C)

Compression Strategy

Store only the differences between consecutive entries! For sorted COO:
Arow = row|i] — row[i — 1]

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025

Compressed COO Example

4x4 Sparse Matrix (Row-Major Sorted COO)

4.0 90
0700
0 00O
0 0 05
Standard COO (Sorted): Compressed COO (Differences):
e rows: [0, 0, 1, 3] e Arows: [0, 0, 1, 2]
e cols: [0, 2, 1, 3] e cols: [0, 2, 1, 3]
e vals: [4,9,7, 5] e vals: [4, 9,7, 5]

How Arows is calculated:
e rows[0] = 0 — Arows[0] = 0 (first entry)
o rows[1l] = 0 — Arows[1l] = 0 - 0 = 0 (same row)
e rows[2] =1 — Arows[2] =1 -0 = 1 (next row)
e rows[3] = 3 — Arows[3] = 3 - 1 = 2 (skip 2 rows)

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 10/31

COO: Complex Real-World Examples

Example 1: Graph Adjacency Matrix

1 # Social network: 1M users, 10M connections
2 # Each edge = (userl, user2, weight)
3 edges = [
4 (0, 1500, 0.8), # User O connected to 1500
5 (0, 2300, 0.6), # User 0 connected to 2300
6 (1500, 0, 0.8), # Undirected: 1500 connected to O
7 (1500, 8900, 0.3), # User 1500 connected to 8900
8 # ... 10M more edges
91
10 # C00: (row=userl, col=user2, value=connection_strength)
11
Example 2: Document-Term Matrix (NLP)
1 # 1M documents, 50K vocabulary
2 # Each entry = (doc_id, term_id, tfidf_score)
3 doc_terms = [
4 (0, 1247, 0.85), # Doc O contains term 1247
5 (0, 8901, 0.42), # Doc O contains term 8901
6 (1, 1247, 0.91), # Doc 1 also contains term 1247
7 (1, 15000, 0.33), # Doc 1 contains term 15000
8 # ... millions more
91
10 # C00: (row=document, col=term, value=tfidf)
11

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025

COOQO: Performance Characteristics

Storage: O(nnz) where nnz = number of non-zeros
Operations on COO:

e Insert: O(1) - just append! Operations
e Delete: O(nnz) - scan to find

Insert
Search

e Row access: O(nnz) - scan
entire list

@ Column access: O(nnz) - scan
entire list

COO is perfect for data ingestion but terrible for computation.
Always convert to CSR/CSC for algorithms!

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025

CSR: Compressed Sparse Row

Three Arrays:
@ Values: All non-zero elements (row-major order)
@ Column Indices: Column position for each value
@ Row Pointers: Starting index of each row

ol | ‘ ‘ ‘

OFFSETS

2 CoLumN IR
0o T™2 | 1 o
INDICES
3|40 50 ’
1
4 60 7.0 80 VALUES 20
;

Key Insight: Use CSR for row-based operations like row slicing and row-wise
computations.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 13 /31

Data Structure 3: Compressed Sparse Column (CSC)

Three Arrays:
e Values: All non-zero elements (column-major order)
@ Row Indices: Row position for each value

@ Column Pointers: Starting index of each column

CoLumn |
OFFSETS

Row .
I I, W 3 .
INDICES :

4 60 7.0 80 Vawes | 1

Key Insight: Use CSC for column-based operations like column slicing and
column-wise computations.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 14 /31

Sliced Ellpack (SELL)

This format allows to significantly improve the performance of all problems
that involve low variability in the number of nonzero elements per row.
Key Features:

@ Matrix divided into slices of exact number of rows
@ Each slice padded to maximum row length
@ Value -1 used for padding

@ Stored in column-major order for memory coalescing

SLICED ELLPACK - SELL Ay
DENSE MATRIX SuceD View:
NSLICES = 3 (ZERO-BASE INDEX) A=
A2
12 =
S [4 8 14
10 20 Ao Ao = [1.() 2.0
3.0 =+
3.0e-
ST w=l]
2 ~t y CoLumN L

Ur1l2 |12 0111 1|1|-1|2|-1]|3]-1 ‘ |
| | INDICES 6.0 0 8.0
- 42 = []

3|40 50 e

6.0 7.0 80 VALUES ‘1.0‘.\30 20 * * 40 * 5060 * 70| * 80 *

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025

Summary: Which Format to Use?

The choice depends entirely on your algorithm’s access patterns.

Feature (o{0]0) CSR CSC SELL

Storage O(nnz) | O(nnz+ m) | O(nnz + n) | O(nnz + padding)
Row Access Slow Fast Slow Fast

Column Access | Slow Slow Fast Slow
Modification Fast Very Slow Very Slow Very Slow

Best For... Building | Row ops Column ops | GPU/Parallel

Common Workflow

Build with COO, convert to CSR/CSC for computation, use SELL for GPU

acceleration.

Amir Noohi (University of Edinburgh)

Programming Data Science at Scale

October 16, 2025

Matrix-Vector Multiplication: The Problem

Example: y = Ax where Ais mx n, xisnx1

Sparse Matrix A

(4x4) Vector x Result y
1
2 0 0 3 ><) — 124
0100 3 4
4 0 0 O
4
0 050 15

Normal Algorithm: For each row /:
e y[i] = A[i,0] x x[0] + A[i, 1] x x[1] + A[/, 2] x x[2] + A[i, 3] x x[3]
@ 4 multiplications + 3 additions per row

o Total: 16 multiplications + 12 additions = 28 operations

We do 0 x2=0, 0 x3=0, etc. - Wasted operations on zeros!

™ = = ——

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025

CSR Solution: Skip the Zeros!

Same Matrix in CSR Format:

atrix CSR Representation:
2 00 3 e values: |2, 3, 1, 4, 5]
0 100 o col_indices: [0, 3, 1, 0, 2]
4 0 00
00 5 0 e row ptr: [0, 2, 3, 4, 5]

CSR Algorithm: For each row i:
e Start at row_ptr[il], end at row ptr[i+1]
@ Only multiply non-zero values: values[k] x x[col_indices[k]]

Operations Count:
e Row 0: 2 operations (values[0] xx[0] + values[1]xx[3])
e Row 1: 1 operation (values[2]xx[1])
@ Row 2: 1 operation (values[3]xx[0])
e Row 3: 1 operation (values[4]xx[2])
o Total: 5 operations vs 28 operations!

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 18 /31

SpMV Scalability: Why CSR Matters

General Case: Matrix A is m x n, Vector xis n x 1
CSR Sparse Multiplication:
e Operations: O(nnz)

o Example: 1000x 1000 matrix,
1000 non-zeros

Normal Matrix Multiplication:
e Operations: O(m X n)
o Example: 1000x 1000 matrix
@ Operations: 1,000,000

e Operations: 1,000
e Problem: Most are 0 x x[j] =0

@ Speedup: 1000x faster!

SpMV-CSR Algorithm

@ For each row i from 0 to m — 1:

@ yll=0
© For k from row ptr([i] to row ptr[i+1]-1:
0 y[i][+ = values[k] X x[col_indices [k]]

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 19/31

5-Minute Break

Part 1 Complete!

@ Sparse data structures (COO, CSR, CSC, SELL)
@ Performance characteristics

@ SpMV bottleneck analysis

Next: Part 2 - Distributed Processing with Spark

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 20/31

Recap: Spark Primitives

From Previous Lectures...

You've seen how Spark uses RDDs to represent distributed data.

@ RDDs: Low-level, flexible collections. We use transformations like
‘map’, ‘filter’, ‘reduceByKey'.

@ Pair RDDs: RDDs of key-value pairs, enabling powerful operations
like ‘join‘ and ‘groupByKey".

Spark’s Machine Learning library, MLIib, builds on these concepts to
handle sparse data efficiently at scale.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 21/31

[I N T N I

© © ~N o

Local Type: ‘SparseVect

‘SparseVector' is Spark’s primary way to represent a feature vector.
@ Stores only non-zero values and their indices.
e Composed of three parts: ‘(size, indices, values)'.
e Many feature transformers in Spark (e.g., ‘HashingTF’,
‘CountVectorizer') output ‘SparseVector's automatically.

Creating a ‘SparseVector' in Scala

import org.apache.spark.ml.linalg.{Vector, Vectors}

// Create a sparse vector (1.0, 0.0, 3.0, 0.0)

// Format: Vectors.sparse(size, indices, values)

val sv: Vector = Vectors.sparse(4, Array(0, 2), Array(1.0,
3.0))

// It can also be created from a sequence of tuples
val sv2: Vector = Vectors.sparse(4, Seq((0, 1.0), (2, 3.0)))

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 22/31

Local Type: ‘SparseMatrix’

‘SparseMatrix' represents a local matrix on a single machine.

Key Design Choice
Spark's ‘SparseMatrix' is stored in CSC (Compressed Sparse Column)
format.

Why CSC?
e Many ML operations (like calculating statistics for a feature, or
updating a model weight) are column-oriented.

o CSC format enables efficient column-wise access patterns.
@ This design choice optimizes for the most common access patterns in
ML pipelines.

October 16, 2025 23/31

Amir Noohi (University of Edinburgh) Programming Data Science at Scale

Distributed Type: ‘CoordinateMatrix’

A ‘CoordinateMatrix' is a distributed matrix backed by an
‘RDD[MatrixEntry]".
e Each 'MatrixEntry" is just a ‘(row: Long, col: Long, value: Double)
o This is a distributed version of the COO format.
@ It's perfect for building huge, very sparse matrices from raw data.

Creating a ‘CoordinateMatrix’ in Scala

1 import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix,
MatrixEntry}

// Create an RDD of MatrixEntry objects

val entries = sc.parallelize(Seq(
MatrixEntry (0, 1, 1.2),
MatrixEntry (1, 2, 3.5),
MatrixEntry (2, 2, 0.5)

))

© N o O AW N

// Create a CoordinateMatrix from the RDD
val coordMatrix = new CoordinateMatrix(entries)

= = =
N = O

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025

Hands-On: Building User-ltem Matrix from Logs

Scenario: Web click logs — Sparse user-item interaction matrix

CSV: user_id, item_id, rating

val logs = sc.textFile("hdfs://data/user_clicks.csv")

val entries = logs.map { line =>
val parts = line.split(",")
MatrixEntry (parts (0).toLong, parts(1l).tolong, parts(2).toDouble)

val userItemMatrix = new CoordinateMatrix(entries)
println(s"Matrix: ${userItemMatrix.numRows ()} x ${userItemMatrix.numCols ()}")

100M users x 10M items = 1 quadrillion entries
@ Dense storage: 8 TB
@ Sparse storage (0.02% non-zero): 16 GB

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025

Operations on CoordinateMatrix

Computing Matrix Statistics

1 // Count ratings per user (row-wise)
2 val ratingsPerUser = userItemMatrix.entries
3 .map(e => (e.i, 1)).reduceByKey(_ + _)
4
5 // Find most active user
6 val mostActive = ratingsPerUser.maxBy(_._2)
7
8 // Average rating per item (column-wise)
9 val avgRatingPerItem = userItemMatrix.entries
10 .map(e => (e.j, (e.value, 1)))
11 .reduceByKey((a, b) => (a._1 + b._1, a._2 + b._2))
12 .mapValues { case (sum, cnt) => sum / cnt }
13
o

Key Insight: Each reduceByKey = shuffle = data movement!

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025

The Big Challenge: Distributed SpGEMM

SPGEMM = Sparse General Matrix-Matrix multiplication (C = AB).
@ Core operation: graph algorithms, collaborative filtering

@ Challenge: A, B, C are too big for one machine

Performance Trap: ‘.multiply() Method
Converting ‘CoordinateMatrix'’ — ‘RowMatrix/BlockMatrix‘ then calling
“multiply()":

@ Internally converts to dense format

@ Sparse matrix: 100 GB — Dense: 100 TB

o Result: OutOfMemoryError

Solution: Implement SpGEMM using map-reduce primitives

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025

SpGEMM: High-Level Solution

Challenge: Compute C = A x B where matrices are too large for one
machine

Matrix A (2x3) Matrix B (3x2)

(22 :

SO B
o o1 O

Solution Strategy

@ Align: Group elements that will be multiplied together
@ Multiply: Compute products of matching pairs
© Sum: Add all products for each output position

Amir Noohi (University of Edinburgh)

Programming Data Science at Scale

October 16, 2025

Key Takeaways

@ Sparsity is everywhere. 99%+ zeros in NLP, recommender systems,
graphs. Exploiting sparsity is essential for scalability.

@ Data structure = performance. COO for building, CSR for rows,
CSC for columns. Choose based on access patterns.

© Distributed sparse ops use map-reduce. SpGEMM shows how
‘map’, ‘join’, and ‘reduceByKey‘ enable scalable algorithms.

Critical Observation

The join operation in SpGEMM is the most expensive step. But what
exactly happens during a join?

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 29/31

Next Week: Hash Partitioning & Shuffling

Today: Sparse operations rely on joins — shuffles

Next Week Topics:
@ Hash Partitioning: How Spark assigns keys to nodes
@ Shuffle Internals: Map output, network, reduce input
© Skew Problems: When some keys dominate

© Optimizations: Broadcast joins, pre-partitioning

@ Why hash function vs random assignment?

@ What if dimension j in SpGEMM is skewed (1M occurrences)?

@ How to reduce shuffle for repeated AxB operations?

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 30/31

Questions?

Amir Noohi niversity of Edinburgh) Programming Data Science at Scale October 16, 2025

	Part 1: The Nature and Representation of Sparse Data
	Part 2: Sparse Processing at Scale with Spark
	Conclusion

