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Today’s Agenda (105 mins)

Part 1: Sparse Data Structures &
Algorithms (60 mins)

Motivation: Where is sparse
data?

Data Structures: COO, CSR,
CSC, SELL

COO Optimization Techniques

SpMV: Problem & Solutions

Performance Analysis &
Scalability

Part 2: Distributed Sparse
Processing (45 mins)

Recap: RDDs & Key-Value
Operations

Sparse Primitives in MLlib

SpGEMM Challenge &
High-Level Solution

Next Week Preview

Goal: Master sparse data structures and distributed algorithms for
large-scale sparse matrix operations.
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Motivation: The World is Mostly Empty

The Ubiquity of Sparsity

In big data, we often care more about what isn’t there than what is. Most
data points in high-dimensional spaces are zero.

Natural Language
Processing

Vocabulary: 170K words

Doc uses 50 words
99.97% sparse

Recommender
Systems

100K users × 50K movies

5
4

3

5
2

4
5

User rates 20 movies
99.96% sparse

Social Network

3 billion Facebook users

You

User has 338 friends
99.99999% sparse
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The Problem with Dense Matrices

Imagine a recommender system for a small online store:

100,000 users

50,000 items

A dense matrix representation (100, 000× 50, 000) would require:

105 × 5× 104 = 5× 109 entries.

Assuming 8 bytes per entry (double): 5× 109 × 8 bytes = 40 GB of
RAM.

What if each user only rated 20 items?

Non-zero entries: 100, 000 users× 20 ratings = 2, 000, 000

Sparsity: 1− 2×106

5×109
= 99.96%

99.96% of the 40 GB is wasted on storing zeros!

Solution: Store only the non-zero values and their locations.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 4 / 31



Data Structure 1: Coordinate List (COO)

The simplest approach: a list of ‘(row, column, value)‘ triplets.

Pros & Cons

+ Excellent for building a matrix. Easy to append new non-zero
entries.

- Terrible for computation. To find all elements in a row, you must
scan the entire list.
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COO: Visual Examples

Example 1: Identity Matrix
4Ö4 Identity Matrix

Only 4 entries!
75% sparse

COO Representation:
Row Col Value
0 0 1.0
1 1 1.0
2 2 1.0
3 3 1.0

Storage: 4 entries

instead of 16!

Example 2: Checkerboard Pattern

6Ö6 Checkerboard
50% sparse

Pattern: Only squares where (i+j) is even have
values!

18 entries instead of 36

Perfect for game boards, image processing
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COO Optimization Techniques

Technique 1: Row-Major Sorting
Before Sorting:

Row Col Value
2 1 7
0 2 5
1 0 9
1 3 2

After Row-Major Sorting:
Row Col Value
0 2 5
1 0 9
1 3 2
2 1 7

Benefit: Better cache locality, faster access patterns!
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Memory Layout Optimization

Technique 2: Memory Layout Optimization

Structure of Arrays (SoA):

Store all rows together, then all columns, then all values

Better for vectorized operations on modern CPUs

Array of Structures (AoS):

Store (row, col, val) triplets together

Better for sequential access patterns

Hybrid Approach:

Use SoA for better vectorization in modern CPUs

Switch between formats based on operation type
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Advanced COO Optimizations

Technique 3: Block-Based COO

Block structure

Block COO: Group entries by blocks

Better cache utilization

Enables vectorized operations

Used in high-performance libraries

Technique 4: Compressed COO (COO-C)

Compression Strategy

Store only the differences between consecutive entries! For sorted COO:
∆row = row [i ]− row [i − 1]
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Compressed COO Example

4Ö4 Sparse Matrix (Row-Major Sorted COO)
4 0 9 0
0 7 0 0
0 0 0 0
0 0 0 5


Standard COO (Sorted):

rows: [0, 0, 1, 3]

cols: [0, 2, 1, 3]

vals: [4, 9, 7, 5]

Compressed COO (Differences):

∆rows: [0, 0, 1, 2]

cols: [0, 2, 1, 3]

vals: [4, 9, 7, 5]

How ∆rows is calculated:

rows[0] = 0 � ∆rows[0] = 0 (first entry)
rows[1] = 0 � ∆rows[1] = 0 - 0 = 0 (same row)
rows[2] = 1 � ∆rows[2] = 1 - 0 = 1 (next row)
rows[3] = 3 � ∆rows[3] = 3 - 1 = 2 (skip 2 rows)

Key Benefits

Storage Savings: Eliminates redundant row indices! For large matrices, this can
save significant memory.
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COO: Complex Real-World Examples

Example 1: Graph Adjacency Matrix
1 # Social network: 1M users , 10M connections

2 # Each edge = (user1 , user2 , weight)

3 edges = [

4 (0, 1500, 0.8), # User 0 connected to 1500

5 (0, 2300, 0.6), # User 0 connected to 2300

6 (1500, 0, 0.8), # Undirected: 1500 connected to 0

7 (1500, 8900, 0.3), # User 1500 connected to 8900

8 # ... 10M more edges

9 ]

10 # COO: (row=user1 , col=user2 , value=connection_strength)

11

Example 2: Document-Term Matrix (NLP)

1 # 1M documents , 50K vocabulary

2 # Each entry = (doc_id, term_id , tfidf_score)

3 doc_terms = [

4 (0, 1247, 0.85), # Doc 0 contains term 1247

5 (0, 8901, 0.42), # Doc 0 contains term 8901

6 (1, 1247, 0.91), # Doc 1 also contains term 1247

7 (1, 15000, 0.33), # Doc 1 contains term 15000

8 # ... millions more

9 ]

10 # COO: (row=document , col=term , value=tfidf)

11
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COO: Performance Characteristics

Storage: O(nnz) where nnz = number of non-zeros
Operations on COO:

Insert: O(1) - just append!

Delete: O(nnz) - scan to find

Row access: O(nnz) - scan
entire list

Column access: O(nnz) - scan
entire list

Time

Operations

Insert
Search

”L
in
ea
r
sc
an
”

Key Insight

COO is perfect for data ingestion but terrible for computation.
Always convert to CSR/CSC for algorithms!
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CSR: Compressed Sparse Row

Three Arrays:

Values: All non-zero elements (row-major order)

Column Indices: Column position for each value

Row Pointers: Starting index of each row

Key Insight: Use CSR for row-based operations like row slicing and row-wise
computations.
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Data Structure 3: Compressed Sparse Column (CSC)

Three Arrays:

Values: All non-zero elements (column-major order)

Row Indices: Row position for each value

Column Pointers: Starting index of each column

Key Insight: Use CSC for column-based operations like column slicing and
column-wise computations.
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Sliced Ellpack (SELL)

This format allows to significantly improve the performance of all problems
that involve low variability in the number of nonzero elements per row.
Key Features:

Matrix divided into slices of exact number of rows

Each slice padded to maximum row length

Value -1 used for padding

Stored in column-major order for memory coalescing
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Summary: Which Format to Use?

The choice depends entirely on your algorithm’s access patterns.
Feature COO CSR CSC SELL
Storage O(nnz) O(nnz +m) O(nnz + n) O(nnz + padding)
Row Access Slow Fast Slow Fast
Column Access Slow Slow Fast Slow
Modification Fast Very Slow Very Slow Very Slow
Best For... Building Row ops Column ops GPU/Parallel

Common Workflow

Build with COO, convert to CSR/CSC for computation, use SELL for GPU
acceleration.
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Matrix-Vector Multiplication: The Problem

Example: y = Ax where A is m × n, x is n × 1

Sparse Matrix A
(4Ö4)

2 0 0 3
0 1 0 0
4 0 0 0
0 0 5 0

 ×
Vector x

1
2
3
4

 =

Result y
14
2
4
15


Normal Algorithm: For each row i :

y [i ] = A[i , 0]× x [0] + A[i , 1]× x [1] + A[i , 2]× x [2] + A[i , 3]× x [3]

4 multiplications + 3 additions per row

Total: 16 multiplications + 12 additions = 28 operations

Problem
We do 0× 2 = 0, 0× 3 = 0, etc. - Wasted operations on zeros!
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CSR Solution: Skip the Zeros!

Same Matrix in CSR Format:
Matrix A
2 0 0 3
0 1 0 0
4 0 0 0
0 0 5 0


CSR Representation:

values: [2, 3, 1, 4, 5]

col indices: [0, 3, 1, 0, 2]

row ptr: [0, 2, 3, 4, 5]

CSR Algorithm: For each row i :

Start at row ptr[i], end at row ptr[i+1]

Only multiply non-zero values: values[k] Ö x[col indices[k]]

Operations Count:

Row 0: 2 operations (values[0]Öx[0] + values[1]Öx[3])

Row 1: 1 operation (values[2]Öx[1])

Row 2: 1 operation (values[3]Öx[0])

Row 3: 1 operation (values[4]Öx[2])

Total: 5 operations vs 28 operations!
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SpMV Scalability: Why CSR Matters

General Case: Matrix A is m × n, Vector x is n × 1

Normal Matrix Multiplication:

Operations: O(m × n)

Example: 1000Ö1000 matrix

Operations: 1,000,000

Problem: Most are 0× x [j ] = 0

CSR Sparse Multiplication:

Operations: O(nnz)

Example: 1000Ö1000 matrix,
1000 non-zeros

Operations: 1,000

Speedup: 1000Ö faster!

SpMV-CSR Algorithm

1 For each row i from 0 to m − 1:

2 y [i ] = 0

3 For k from row ptr[i] to row ptr[i+1]-1:

4 y [i ]+ = values[k]× x [col indices[k]]
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5-Minute Break

Part 1 Complete!

Sparse data structures (COO, CSR, CSC, SELL)

Performance characteristics

SpMV bottleneck analysis

Next: Part 2 - Distributed Processing with Spark
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Recap: Spark Primitives

From Previous Lectures...

You’ve seen how Spark uses RDDs to represent distributed data.

RDDs: Low-level, flexible collections. We use transformations like
‘map‘, ‘filter‘, ‘reduceByKey‘.

Pair RDDs: RDDs of key-value pairs, enabling powerful operations
like ‘join‘ and ‘groupByKey‘.

Spark’s Machine Learning library, MLlib, builds on these concepts to
handle sparse data efficiently at scale.
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Local Type: ‘SparseVector‘

‘SparseVector‘ is Spark’s primary way to represent a feature vector.

Stores only non-zero values and their indices.

Composed of three parts: ‘(size, indices, values)‘.

Many feature transformers in Spark (e.g., ‘HashingTF‘,
‘CountVectorizer‘) output ‘SparseVector‘s automatically.

Creating a ‘SparseVector‘ in Scala

1 import org.apache.spark.ml.linalg .{Vector , Vectors}

2

3 // Create a sparse vector (1.0, 0.0, 3.0, 0.0)

4 // Format: Vectors.sparse(size , indices , values)

5 val sv: Vector = Vectors.sparse(4, Array(0, 2), Array (1.0,

3.0))

6

7 // It can also be created from a sequence of tuples

8 val sv2: Vector = Vectors.sparse(4, Seq((0, 1.0), (2, 3.0)))

9
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Local Type: ‘SparseMatrix‘

‘SparseMatrix‘ represents a local matrix on a single machine.

Key Design Choice

Spark’s ‘SparseMatrix‘ is stored in CSC (Compressed Sparse Column)
format.

Why CSC?

Many ML operations (like calculating statistics for a feature, or
updating a model weight) are column-oriented.

CSC format enables efficient column-wise access patterns.

This design choice optimizes for the most common access patterns in
ML pipelines.
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Distributed Type: ‘CoordinateMatrix‘

A ‘CoordinateMatrix‘ is a distributed matrix backed by an
‘RDD[MatrixEntry]‘.

Each ‘MatrixEntry‘ is just a ‘(row: Long, col: Long, value: Double)‘.
This is a distributed version of the COO format.
It’s perfect for building huge, very sparse matrices from raw data.

Creating a ‘CoordinateMatrix‘ in Scala

1 import org.apache.spark.mllib.linalg.distributed .{ CoordinateMatrix ,

MatrixEntry}

2

3 // Create an RDD of MatrixEntry objects

4 val entries = sc.parallelize(Seq(

5 MatrixEntry (0, 1, 1.2),

6 MatrixEntry (1, 2, 3.5),

7 MatrixEntry (2, 2, 0.5)

8 ))

9

10 // Create a CoordinateMatrix from the RDD

11 val coordMatrix = new CoordinateMatrix(entries)

12
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Hands-On: Building User-Item Matrix from Logs

Scenario: Web click logs � Sparse user-item interaction matrix

CSV: user id, item id, rating

1 val logs = sc.textFile("hdfs://data/user_clicks.csv")

2
3 val entries = logs.map { line =>

4 val parts = line.split(",")

5 MatrixEntry(parts (0).toLong , parts (1).toLong , parts (2).toDouble)

6 }

7
8 val userItemMatrix = new CoordinateMatrix(entries)

9 println(s"Matrix: ${userItemMatrix.numRows ()} x ${userItemMatrix.numCols ()}")

10

100M users Ö 10M items = 1 quadrillion entries

Dense storage: 8 TB

Sparse storage (0.02% non-zero): 16 GB
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Operations on CoordinateMatrix

Computing Matrix Statistics

1 // Count ratings per user (row -wise)

2 val ratingsPerUser = userItemMatrix.entries

3 .map(e => (e.i, 1)).reduceByKey(_ + _)

4
5 // Find most active user

6 val mostActive = ratingsPerUser.maxBy(_._2)

7
8 // Average rating per item (column -wise)

9 val avgRatingPerItem = userItemMatrix.entries

10 .map(e => (e.j, (e.value , 1)))

11 .reduceByKey ((a, b) => (a._1 + b._1, a._2 + b._2))

12 .mapValues { case (sum , cnt) => sum / cnt }

13

Key Insight: Each reduceByKey = shuffle = data movement!
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The Big Challenge: Distributed SpGEMM

SpGEMM = Sparse General Matrix-Matrix multiplication (C = AB).

Core operation: graph algorithms, collaborative filtering

Challenge: A, B, C are too big for one machine

Performance Trap: ‘.multiply()‘ Method

Converting ‘CoordinateMatrix‘ � ‘RowMatrix/BlockMatrix‘ then calling
‘.multiply()‘:

Internally converts to dense format

Sparse matrix: 100 GB � Dense: 100 TB

Result: OutOfMemoryError

Solution: Implement SpGEMM using map-reduce primitives
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SpGEMM: High-Level Solution

Challenge: Compute C = A× B where matrices are too large for one
machine

Matrix A (2Ö3)(
2 0 3
0 1 0

) ×
Matrix B (3Ö2)4 0

0 5
6 0


Solution Strategy

1 Align: Group elements that will be multiplied together

2 Multiply: Compute products of matching pairs

3 Sum: Add all products for each output position
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Key Takeaways

1 Sparsity is everywhere. 99%+ zeros in NLP, recommender systems,
graphs. Exploiting sparsity is essential for scalability.

2 Data structure = performance. COO for building, CSR for rows,
CSC for columns. Choose based on access patterns.

3 Distributed sparse ops use map-reduce. SpGEMM shows how
‘map‘, ‘join‘, and ‘reduceByKey‘ enable scalable algorithms.

Critical Observation

The join operation in SpGEMM is the most expensive step. But what
exactly happens during a join?
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Next Week: Hash Partitioning & Shuffling

Today: Sparse operations rely on joins � shuffles

Next Week Topics:

1 Hash Partitioning: How Spark assigns keys to nodes

2 Shuffle Internals: Map output, network, reduce input

3 Skew Problems: When some keys dominate

4 Optimizations: Broadcast joins, pre-partitioning

Think About
Why hash function vs random assignment?

What if dimension j in SpGEMM is skewed (1M occurrences)?

How to reduce shuffle for repeated AÖB operations?
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Questions?
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