
Programming Data Science at Scale
Lecture 5: Sparse Processing

Amir Noohi

University of Edinburgh

October 16, 2025

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 1 / 31



Today’s Agenda (105 mins)

Part 1: Sparse Data Structures &
Algorithms (60 mins)

Motivation: Where is sparse
data?

Data Structures: COO, CSR,
CSC, SELL

COO Optimization Techniques

SpMV: Problem & Solutions

Performance Analysis &
Scalability

Part 2: Distributed Sparse
Processing (45 mins)

Recap: RDDs & Key-Value
Operations

Sparse Primitives in MLlib

SpGEMM Challenge &
High-Level Solution

Next Week Preview

Goal: Master sparse data structures and distributed algorithms for
large-scale sparse matrix operations.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 2 / 31



Motivation: The World is Mostly Empty

The Ubiquity of Sparsity

In big data, we often care more about what isn’t there than what is. Most
data points in high-dimensional spaces are zero.

Natural Language
Processing

Vocabulary: 170K words

Doc uses 50 words
99.97% sparse

Recommender
Systems

100K users × 50K movies

5
4

3

5
2

4
5

User rates 20 movies
99.96% sparse

Social Network

3 billion Facebook users

You

User has 338 friends
99.99999% sparse

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 3 / 31



The Problem with Dense Matrices

Imagine a recommender system for a small online store:

100,000 users

50,000 items

A dense matrix representation (100, 000× 50, 000) would require:

105 × 5× 104 = 5× 109 entries.

Assuming 8 bytes per entry (double): 5× 109 × 8 bytes = 40 GB of
RAM.

What if each user only rated 20 items?

Non-zero entries: 100, 000 users× 20 ratings = 2, 000, 000

Sparsity: 1− 2×106

5×109
= 99.96%

99.96% of the 40 GB is wasted on storing zeros!

Solution: Store only the non-zero values and their locations.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 4 / 31



Data Structure 1: Coordinate List (COO)

The simplest approach: a list of ‘(row, column, value)‘ triplets.

Pros & Cons

+ Excellent for building a matrix. Easy to append new non-zero
entries.

- Terrible for computation. To find all elements in a row, you must
scan the entire list.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 5 / 31



COO: Visual Examples

Example 1: Identity Matrix
4Ö4 Identity Matrix

Only 4 entries!
75% sparse

COO Representation:
Row Col Value
0 0 1.0
1 1 1.0
2 2 1.0
3 3 1.0

Storage: 4 entries

instead of 16!

Example 2: Checkerboard Pattern

6Ö6 Checkerboard
50% sparse

Pattern: Only squares where (i+j) is even have
values!

18 entries instead of 36

Perfect for game boards, image processing

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 6 / 31



COO Optimization Techniques

Technique 1: Row-Major Sorting
Before Sorting:

Row Col Value
2 1 7
0 2 5
1 0 9
1 3 2

After Row-Major Sorting:
Row Col Value
0 2 5
1 0 9
1 3 2
2 1 7

Benefit: Better cache locality, faster access patterns!

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 7 / 31



Memory Layout Optimization

Technique 2: Memory Layout Optimization

Structure of Arrays (SoA):

Store all rows together, then all columns, then all values

Better for vectorized operations on modern CPUs

Array of Structures (AoS):

Store (row, col, val) triplets together

Better for sequential access patterns

Hybrid Approach:

Use SoA for better vectorization in modern CPUs

Switch between formats based on operation type

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 8 / 31



Advanced COO Optimizations

Technique 3: Block-Based COO

Block structure

Block COO: Group entries by blocks

Better cache utilization

Enables vectorized operations

Used in high-performance libraries

Technique 4: Compressed COO (COO-C)

Compression Strategy

Store only the differences between consecutive entries! For sorted COO:
∆row = row [i ]− row [i − 1]

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 9 / 31



Compressed COO Example

4Ö4 Sparse Matrix (Row-Major Sorted COO)
4 0 9 0
0 7 0 0
0 0 0 0
0 0 0 5


Standard COO (Sorted):

rows: [0, 0, 1, 3]

cols: [0, 2, 1, 3]

vals: [4, 9, 7, 5]

Compressed COO (Differences):

∆rows: [0, 0, 1, 2]

cols: [0, 2, 1, 3]

vals: [4, 9, 7, 5]

How ∆rows is calculated:

rows[0] = 0 � ∆rows[0] = 0 (first entry)
rows[1] = 0 � ∆rows[1] = 0 - 0 = 0 (same row)
rows[2] = 1 � ∆rows[2] = 1 - 0 = 1 (next row)
rows[3] = 3 � ∆rows[3] = 3 - 1 = 2 (skip 2 rows)

Key Benefits

Storage Savings: Eliminates redundant row indices! For large matrices, this can
save significant memory.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 10 / 31



COO: Complex Real-World Examples

Example 1: Graph Adjacency Matrix
1 # Social network: 1M users , 10M connections

2 # Each edge = (user1 , user2 , weight)

3 edges = [

4 (0, 1500, 0.8), # User 0 connected to 1500

5 (0, 2300, 0.6), # User 0 connected to 2300

6 (1500, 0, 0.8), # Undirected: 1500 connected to 0

7 (1500, 8900, 0.3), # User 1500 connected to 8900

8 # ... 10M more edges

9 ]

10 # COO: (row=user1 , col=user2 , value=connection_strength)

11

Example 2: Document-Term Matrix (NLP)

1 # 1M documents , 50K vocabulary

2 # Each entry = (doc_id, term_id , tfidf_score)

3 doc_terms = [

4 (0, 1247, 0.85), # Doc 0 contains term 1247

5 (0, 8901, 0.42), # Doc 0 contains term 8901

6 (1, 1247, 0.91), # Doc 1 also contains term 1247

7 (1, 15000, 0.33), # Doc 1 contains term 15000

8 # ... millions more

9 ]

10 # COO: (row=document , col=term , value=tfidf)

11

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 11 / 31



COO: Performance Characteristics

Storage: O(nnz) where nnz = number of non-zeros
Operations on COO:

Insert: O(1) - just append!

Delete: O(nnz) - scan to find

Row access: O(nnz) - scan
entire list

Column access: O(nnz) - scan
entire list

Time

Operations

Insert
Search

”L
in
ea
r
sc
an
”

Key Insight

COO is perfect for data ingestion but terrible for computation.
Always convert to CSR/CSC for algorithms!

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 12 / 31



CSR: Compressed Sparse Row

Three Arrays:

Values: All non-zero elements (row-major order)

Column Indices: Column position for each value

Row Pointers: Starting index of each row

Key Insight: Use CSR for row-based operations like row slicing and row-wise
computations.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 13 / 31



Data Structure 3: Compressed Sparse Column (CSC)

Three Arrays:

Values: All non-zero elements (column-major order)

Row Indices: Row position for each value

Column Pointers: Starting index of each column

Key Insight: Use CSC for column-based operations like column slicing and
column-wise computations.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 14 / 31



Sliced Ellpack (SELL)

This format allows to significantly improve the performance of all problems
that involve low variability in the number of nonzero elements per row.
Key Features:

Matrix divided into slices of exact number of rows

Each slice padded to maximum row length

Value -1 used for padding

Stored in column-major order for memory coalescing

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 15 / 31



Summary: Which Format to Use?

The choice depends entirely on your algorithm’s access patterns.
Feature COO CSR CSC SELL
Storage O(nnz) O(nnz +m) O(nnz + n) O(nnz + padding)
Row Access Slow Fast Slow Fast
Column Access Slow Slow Fast Slow
Modification Fast Very Slow Very Slow Very Slow
Best For... Building Row ops Column ops GPU/Parallel

Common Workflow

Build with COO, convert to CSR/CSC for computation, use SELL for GPU
acceleration.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 16 / 31



Matrix-Vector Multiplication: The Problem

Example: y = Ax where A is m × n, x is n × 1

Sparse Matrix A
(4Ö4)

2 0 0 3
0 1 0 0
4 0 0 0
0 0 5 0

 ×
Vector x

1
2
3
4

 =

Result y
14
2
4
15


Normal Algorithm: For each row i :

y [i ] = A[i , 0]× x [0] + A[i , 1]× x [1] + A[i , 2]× x [2] + A[i , 3]× x [3]

4 multiplications + 3 additions per row

Total: 16 multiplications + 12 additions = 28 operations

Problem
We do 0× 2 = 0, 0× 3 = 0, etc. - Wasted operations on zeros!

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 17 / 31



CSR Solution: Skip the Zeros!

Same Matrix in CSR Format:
Matrix A
2 0 0 3
0 1 0 0
4 0 0 0
0 0 5 0


CSR Representation:

values: [2, 3, 1, 4, 5]

col indices: [0, 3, 1, 0, 2]

row ptr: [0, 2, 3, 4, 5]

CSR Algorithm: For each row i :

Start at row ptr[i], end at row ptr[i+1]

Only multiply non-zero values: values[k] Ö x[col indices[k]]

Operations Count:

Row 0: 2 operations (values[0]Öx[0] + values[1]Öx[3])

Row 1: 1 operation (values[2]Öx[1])

Row 2: 1 operation (values[3]Öx[0])

Row 3: 1 operation (values[4]Öx[2])

Total: 5 operations vs 28 operations!
Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 18 / 31



SpMV Scalability: Why CSR Matters

General Case: Matrix A is m × n, Vector x is n × 1

Normal Matrix Multiplication:

Operations: O(m × n)

Example: 1000Ö1000 matrix

Operations: 1,000,000

Problem: Most are 0× x [j ] = 0

CSR Sparse Multiplication:

Operations: O(nnz)

Example: 1000Ö1000 matrix,
1000 non-zeros

Operations: 1,000

Speedup: 1000Ö faster!

SpMV-CSR Algorithm

1 For each row i from 0 to m − 1:

2 y [i ] = 0

3 For k from row ptr[i] to row ptr[i+1]-1:

4 y [i ]+ = values[k]× x [col indices[k]]

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 19 / 31



5-Minute Break

Part 1 Complete!

Sparse data structures (COO, CSR, CSC, SELL)

Performance characteristics

SpMV bottleneck analysis

Next: Part 2 - Distributed Processing with Spark

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 20 / 31



Recap: Spark Primitives

From Previous Lectures...

You’ve seen how Spark uses RDDs to represent distributed data.

RDDs: Low-level, flexible collections. We use transformations like
‘map‘, ‘filter‘, ‘reduceByKey‘.

Pair RDDs: RDDs of key-value pairs, enabling powerful operations
like ‘join‘ and ‘groupByKey‘.

Spark’s Machine Learning library, MLlib, builds on these concepts to
handle sparse data efficiently at scale.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 21 / 31



Local Type: ‘SparseVector‘

‘SparseVector‘ is Spark’s primary way to represent a feature vector.

Stores only non-zero values and their indices.

Composed of three parts: ‘(size, indices, values)‘.

Many feature transformers in Spark (e.g., ‘HashingTF‘,
‘CountVectorizer‘) output ‘SparseVector‘s automatically.

Creating a ‘SparseVector‘ in Scala

1 import org.apache.spark.ml.linalg .{Vector , Vectors}

2

3 // Create a sparse vector (1.0, 0.0, 3.0, 0.0)

4 // Format: Vectors.sparse(size , indices , values)

5 val sv: Vector = Vectors.sparse(4, Array(0, 2), Array (1.0,

3.0))

6

7 // It can also be created from a sequence of tuples

8 val sv2: Vector = Vectors.sparse(4, Seq((0, 1.0), (2, 3.0)))

9

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 22 / 31



Local Type: ‘SparseMatrix‘

‘SparseMatrix‘ represents a local matrix on a single machine.

Key Design Choice

Spark’s ‘SparseMatrix‘ is stored in CSC (Compressed Sparse Column)
format.

Why CSC?

Many ML operations (like calculating statistics for a feature, or
updating a model weight) are column-oriented.

CSC format enables efficient column-wise access patterns.

This design choice optimizes for the most common access patterns in
ML pipelines.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 23 / 31



Distributed Type: ‘CoordinateMatrix‘

A ‘CoordinateMatrix‘ is a distributed matrix backed by an
‘RDD[MatrixEntry]‘.

Each ‘MatrixEntry‘ is just a ‘(row: Long, col: Long, value: Double)‘.
This is a distributed version of the COO format.
It’s perfect for building huge, very sparse matrices from raw data.

Creating a ‘CoordinateMatrix‘ in Scala

1 import org.apache.spark.mllib.linalg.distributed .{ CoordinateMatrix ,

MatrixEntry}

2

3 // Create an RDD of MatrixEntry objects

4 val entries = sc.parallelize(Seq(

5 MatrixEntry (0, 1, 1.2),

6 MatrixEntry (1, 2, 3.5),

7 MatrixEntry (2, 2, 0.5)

8 ))

9

10 // Create a CoordinateMatrix from the RDD

11 val coordMatrix = new CoordinateMatrix(entries)

12

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 24 / 31



Hands-On: Building User-Item Matrix from Logs

Scenario: Web click logs � Sparse user-item interaction matrix

CSV: user id, item id, rating

1 val logs = sc.textFile("hdfs://data/user_clicks.csv")

2
3 val entries = logs.map { line =>

4 val parts = line.split(",")

5 MatrixEntry(parts (0).toLong , parts (1).toLong , parts (2).toDouble)

6 }

7
8 val userItemMatrix = new CoordinateMatrix(entries)

9 println(s"Matrix: ${userItemMatrix.numRows ()} x ${userItemMatrix.numCols ()}")

10

100M users Ö 10M items = 1 quadrillion entries

Dense storage: 8 TB

Sparse storage (0.02% non-zero): 16 GB

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 25 / 31



Operations on CoordinateMatrix

Computing Matrix Statistics

1 // Count ratings per user (row -wise)

2 val ratingsPerUser = userItemMatrix.entries

3 .map(e => (e.i, 1)).reduceByKey(_ + _)

4
5 // Find most active user

6 val mostActive = ratingsPerUser.maxBy(_._2)

7
8 // Average rating per item (column -wise)

9 val avgRatingPerItem = userItemMatrix.entries

10 .map(e => (e.j, (e.value , 1)))

11 .reduceByKey ((a, b) => (a._1 + b._1, a._2 + b._2))

12 .mapValues { case (sum , cnt) => sum / cnt }

13

Key Insight: Each reduceByKey = shuffle = data movement!

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 26 / 31



The Big Challenge: Distributed SpGEMM

SpGEMM = Sparse General Matrix-Matrix multiplication (C = AB).

Core operation: graph algorithms, collaborative filtering

Challenge: A, B, C are too big for one machine

Performance Trap: ‘.multiply()‘ Method

Converting ‘CoordinateMatrix‘ � ‘RowMatrix/BlockMatrix‘ then calling
‘.multiply()‘:

Internally converts to dense format

Sparse matrix: 100 GB � Dense: 100 TB

Result: OutOfMemoryError

Solution: Implement SpGEMM using map-reduce primitives

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 27 / 31



SpGEMM: High-Level Solution

Challenge: Compute C = A× B where matrices are too large for one
machine

Matrix A (2Ö3)(
2 0 3
0 1 0

) ×
Matrix B (3Ö2)4 0

0 5
6 0


Solution Strategy

1 Align: Group elements that will be multiplied together

2 Multiply: Compute products of matching pairs

3 Sum: Add all products for each output position

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 28 / 31



Key Takeaways

1 Sparsity is everywhere. 99%+ zeros in NLP, recommender systems,
graphs. Exploiting sparsity is essential for scalability.

2 Data structure = performance. COO for building, CSR for rows,
CSC for columns. Choose based on access patterns.

3 Distributed sparse ops use map-reduce. SpGEMM shows how
‘map‘, ‘join‘, and ‘reduceByKey‘ enable scalable algorithms.

Critical Observation

The join operation in SpGEMM is the most expensive step. But what
exactly happens during a join?

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 29 / 31



Next Week: Hash Partitioning & Shuffling

Today: Sparse operations rely on joins � shuffles

Next Week Topics:

1 Hash Partitioning: How Spark assigns keys to nodes

2 Shuffle Internals: Map output, network, reduce input

3 Skew Problems: When some keys dominate

4 Optimizations: Broadcast joins, pre-partitioning

Think About
Why hash function vs random assignment?

What if dimension j in SpGEMM is skewed (1M occurrences)?

How to reduce shuffle for repeated AÖB operations?

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 30 / 31



Questions?

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025 31 / 31


	Part 1: The Nature and Representation of Sparse Data
	Part 2: Sparse Processing at Scale with Spark
	Conclusion

