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Today's Agenda (105 mins)

Part 1: Sparse Data Structures &

Algorithms (60 mins) Part 2: Distributed Sparse
e Motivation: Where is sparse Processing (45 mins)
data? @ Recap: RDDs & Key-Value
@ Data Structures: COO, CSR, Operations
CSC, SELL @ Sparse Primitives in MLIib
e COO Optimization Techniques o SpGEMM Challenge &
@ SpMV: Problem & Solutions High-Level Solution
@ Performance Analysis & o Next Week Preview
Scalability

Goal: Master sparse data structures and distributed algorithms for
large-scale sparse matrix operations.
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Motivation: The World is Mostly Empty

The Ubiquity of Sparsity

In big data, we often care more about what isn’t there than what is. Most

data points in high-dimensional spaces are zero.

Natural Language
Processing

Vocabulary: 170K words

Doc uses 50 words
99.97% sparse
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Recommender
Systems

100K users x 50K movies

User rates 20 movies
99.96% sparse
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Social Network

3 billion Facebook users

‘@

@ Yﬂ‘l'l

User has 338 friends
99.99999% sparse
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The Problem with Dense Matrices

Imagine a recommender system for a small online store:
@ 100,000 users
e 50,000 items

A dense matrix representation (100,000 x 50,000) would require:
e 10° x 5 x 10* =5 x 10 entries.

e Assuming 8 bytes per entry (double): 5 x 10° x 8 bytes = 40 GB of
RAM.

What if each user only rated 20 items?

o Non-zero entries: 100,000 users x 20 ratings = 2,000, 000

o Sparsity: 1 — giigg = 09.96%

@ 99.96% of the 40 GB is wasted on storing zeros!

Solution: Store only the non-zero values and their locations.

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025



Data Structure 1: Coordinate List (COO)

The simplest approach: a list of ‘(row, column, value)' triplets.

0 1 2 3 0 1 2 3 4 5 6 7
Row |
0 [E0 INDICES 8 Le 818 |E 8 ‘
1 3.0
2 3 4 5 6 7
COLUMN |
2 1 0 1 1 2 3
INDICES |
3[40 50 '
| 2 3 4 5 6 7
a 60 7.0 80 VALUES 30 40 50 60 70 80 ‘

Pros & Cons

+ Excellent for building a matrix. Easy to append new non-zero
entries.

- Terrible for computation. To find all elements in a row, you must
scan the entire list.
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COO: Visual Examples

Example 1: Identity Matrix

44 ldentity Matrix COO Representation:

Row Col Value

0 0 1.0
1 1 1.0 Storage: 4 entries
2 2 1.0
3 3 1.0
O;sl,yo/f :;;,rfl instead of 16!

Example 2: Checkerboard Pattern

Pattern: Only squares where (i+]) is even have

B values!
|| @ 18 entries instead of 36
6x6 Checkerboard @ Perfect for game boards, image processing

50% sparse
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COO Optimization Techniques

Technique 1: Row-Major Sorting

Before Sorting: After Row-Major Sorting:
Row Col Value Row Col Value

2 1 7 0 2 5

0 2 5 1 0 9

1 0 9 1 3 2

1 3 2 2 1 7

Benefit: Better cache locality, faster access patterns!
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Memory Layout Optimization

Technique 2: Memory Layout Optimization

Structure of Arrays (SoA):
@ Store all rows together, then all columns, then all values

@ Better for vectorized operations on modern CPUs

Array of Structures (AoS):
@ Store (row, col, val) triplets together

@ Better for sequential access patterns

Hybrid Approach:
@ Use SoA for better vectorization in modern CPUs

@ Switch between formats based on operation type

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025



Advanced COO Optimizations

Technique 3: Block-Based COO
. Block COO: Group entries by blocks

. @ Enables vectorized operations

Block structure

@ Better cache utilization

@ Used in high-performance libraries

Technique 4: Compressed COO (COO-C)

Compression Strategy

Store only the differences between consecutive entries! For sorted COO:
Arow = row|i] — row[i — 1]

Amir Noohi (University of Edinburgh) Programming Data Science at Scale October 16, 2025



Compressed COO Example

4x4 Sparse Matrix (Row-Major Sorted COO)

4.0 90
0700
0 00O
0 0 05
Standard COO (Sorted): Compressed COO (Differences):
e rows: [0, 0, 1, 3] e Arows: [0, 0, 1, 2]
e cols: [0, 2, 1, 3] e cols: [0, 2, 1, 3]
e vals: [4,9,7, 5] e vals: [4, 9,7, 5]

How Arows is calculated:
e rows[0] = 0 — Arows[0] = 0 (first entry)
o rows[1l] = 0 — Arows[1l] = 0 - 0 = 0 (same row)
e rows[2] =1 — Arows[2] =1 -0 = 1 (next row)
e rows[3] = 3 — Arows[3] = 3 - 1 = 2 (skip 2 rows)
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COO: Complex Real-World Examples

Example 1: Graph Adjacency Matrix

1 # Social network: 1M users, 10M connections
2 # Each edge = (userl, user2, weight)
3 edges = [
4 (0, 1500, 0.8), # User O connected to 1500
5 (0, 2300, 0.6), # User 0 connected to 2300
6 (1500, 0, 0.8), # Undirected: 1500 connected to O
7 (1500, 8900, 0.3), # User 1500 connected to 8900
8 # ... 10M more edges
91
10 # C00: (row=userl, col=user2, value=connection_strength)
11
Example 2: Document-Term Matrix (NLP)
1 # 1M documents, 50K vocabulary
2 # Each entry = (doc_id, term_id, tfidf_score)
3 doc_terms = [
4 (0, 1247, 0.85), # Doc O contains term 1247
5 (0, 8901, 0.42), # Doc O contains term 8901
6 (1, 1247, 0.91), # Doc 1 also contains term 1247
7 (1, 15000, 0.33), # Doc 1 contains term 15000
8 # ... millions more
91
10 # C00: (row=document, col=term, value=tfidf)
11
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COOQO: Performance Characteristics

Storage: O(nnz) where nnz = number of non-zeros
Operations on COO:

e Insert: O(1) - just append! Operations
e Delete: O(nnz) - scan to find

Insert
Search

e Row access: O(nnz) - scan
entire list

@ Column access: O(nnz) - scan
entire list

COO is perfect for data ingestion but terrible for computation.
Always convert to CSR/CSC for algorithms!
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CSR: Compressed Sparse Row

Three Arrays:
@ Values: All non-zero elements (row-major order)
@ Column Indices: Column position for each value
@ Row Pointers: Starting index of each row

ol | ‘ ‘ ‘

OFFSETS

2 CoLumN IR
0o T™2 | 1 o
INDICES
3|40 50 ’
1
4 60 7.0 80 VALUES 20
;

Key Insight: Use CSR for row-based operations like row slicing and row-wise
computations.
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Data Structure 3: Compressed Sparse Column (CSC)

Three Arrays:
e Values: All non-zero elements (column-major order)
@ Row Indices: Row position for each value

@ Column Pointers: Starting index of each column

CoLumn |
OFFSETS

Row .
I I, W 3 .
INDICES :

4 60 7.0 80 Vawes | 1

Key Insight: Use CSC for column-based operations like column slicing and
column-wise computations.
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Sliced Ellpack (SELL)

This format allows to significantly improve the performance of all problems
that involve low variability in the number of nonzero elements per row.
Key Features:

@ Matrix divided into slices of exact number of rows
@ Each slice padded to maximum row length
@ Value -1 used for padding

@ Stored in column-major order for memory coalescing

SLICED ELLPACK - SELL Ay
DENSE MATRIX SuceD View:
NSLICES = 3 (ZERO-BASE INDEX) A=
A2
12 =
S [ 4 8 14
10 20 Ao Ao = [1.() 2.0
3.0 =+
3.0e-
ST w=l ]
2 ~t y CoLumN L

Ur1l2 |12 0111 1|1|-1|2|-1]|3]-1 ‘ |
| | INDICES 6.0 0 8.0
- 42 = [ ]

3|40 50 e

6.0 7.0 80 VALUES ‘1.0‘.\30 20 * * 40 * 5060 * 70| * 80 *
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Summary: Which Format to Use?

The choice depends entirely on your algorithm’s access patterns.

Feature (o{0]0) CSR CSC SELL

Storage O(nnz) | O(nnz+ m) | O(nnz + n) | O(nnz + padding)
Row Access Slow Fast Slow Fast

Column Access | Slow Slow Fast Slow
Modification Fast Very Slow Very Slow Very Slow

Best For... Building | Row ops Column ops | GPU/Parallel

Common Workflow

Build with COO, convert to CSR/CSC for computation, use SELL for GPU

acceleration.
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Matrix-Vector Multiplication: The Problem

Example: y = Ax where Ais mx n, xisnx1

Sparse Matrix A

(4x4) Vector x Result y
1
2 0 0 3 >< ) — 124
0100 3 4
4 0 0 O
4
0 050 15

Normal Algorithm: For each row /:
e y[i] = A[i,0] x x[0] + A[i, 1] x x[1] + A[/, 2] x x[2] + A[i, 3] x x[3]
@ 4 multiplications + 3 additions per row

o Total: 16 multiplications + 12 additions = 28 operations

We do 0 x2=0, 0 x3=0, etc. - Wasted operations on zeros!

™ = = ——
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CSR Solution: Skip the Zeros!

Same Matrix in CSR Format:

atrix CSR Representation:
2 00 3 e values: |2, 3, 1, 4, 5]
0 100 o col_indices: [0, 3, 1, 0, 2]
4 0 00
00 5 0 e row ptr: [0, 2, 3, 4, 5]

CSR Algorithm: For each row i:
e Start at row_ptr[il], end at row ptr[i+1]
@ Only multiply non-zero values: values[k] x x[col_indices[k]]

Operations Count:
e Row 0: 2 operations (values[0] xx[0] + values[1]xx[3])
e Row 1: 1 operation (values[2]xx[1])
@ Row 2: 1 operation (values[3]xx[0])
e Row 3: 1 operation (values[4]xx[2])
o Total: 5 operations vs 28 operations!
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SpMV Scalability: Why CSR Matters

General Case: Matrix A is m x n, Vector xis n x 1
CSR Sparse Multiplication:
e Operations: O(nnz)

o Example: 1000x 1000 matrix,
1000 non-zeros

Normal Matrix Multiplication:
e Operations: O(m X n)
o Example: 1000x 1000 matrix
@ Operations: 1,000,000

e Operations: 1,000
e Problem: Most are 0 x x[j] =0

@ Speedup: 1000x faster!

SpMV-CSR Algorithm

@ For each row i from 0 to m — 1:

@ yll=0
© For k from row ptr([i] to row ptr[i+1]-1:
0 y[i][+ = values[k] X x[col_indices [k]]
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5-Minute Break

Part 1 Complete!

@ Sparse data structures (COO, CSR, CSC, SELL)
@ Performance characteristics

@ SpMV bottleneck analysis

Next: Part 2 - Distributed Processing with Spark
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Recap: Spark Primitives

From Previous Lectures...

You've seen how Spark uses RDDs to represent distributed data.

@ RDDs: Low-level, flexible collections. We use transformations like
‘map’, ‘filter’, ‘reduceByKey'.

@ Pair RDDs: RDDs of key-value pairs, enabling powerful operations
like ‘join‘ and ‘groupByKey".

Spark’s Machine Learning library, MLIib, builds on these concepts to
handle sparse data efficiently at scale.
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Local Type: ‘SparseVect

‘SparseVector' is Spark’s primary way to represent a feature vector.
@ Stores only non-zero values and their indices.
e Composed of three parts: ‘(size, indices, values)'.
e Many feature transformers in Spark (e.g., ‘HashingTF’,
‘CountVectorizer') output ‘SparseVector's automatically.

Creating a ‘SparseVector' in Scala

import org.apache.spark.ml.linalg.{Vector, Vectors}

// Create a sparse vector (1.0, 0.0, 3.0, 0.0)

// Format: Vectors.sparse(size, indices, values)

val sv: Vector = Vectors.sparse(4, Array(0, 2), Array(1.0,
3.0))

// It can also be created from a sequence of tuples
val sv2: Vector = Vectors.sparse(4, Seq((0, 1.0), (2, 3.0)))
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Local Type: ‘SparseMatrix’

‘SparseMatrix' represents a local matrix on a single machine.

Key Design Choice
Spark's ‘SparseMatrix' is stored in CSC (Compressed Sparse Column)
format.

Why CSC?
e Many ML operations (like calculating statistics for a feature, or
updating a model weight) are column-oriented.

o CSC format enables efficient column-wise access patterns.
@ This design choice optimizes for the most common access patterns in
ML pipelines.
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Distributed Type: ‘CoordinateMatrix’

A ‘CoordinateMatrix' is a distributed matrix backed by an
‘RDD[MatrixEntry]".
e Each 'MatrixEntry" is just a ‘(row: Long, col: Long, value: Double)
o This is a distributed version of the COO format.
@ It's perfect for building huge, very sparse matrices from raw data.

Creating a ‘CoordinateMatrix’ in Scala

1 import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix,
MatrixEntry}

// Create an RDD of MatrixEntry objects

val entries = sc.parallelize(Seq(
MatrixEntry (0, 1, 1.2),
MatrixEntry (1, 2, 3.5),
MatrixEntry (2, 2, 0.5)

))

© N o O AW N

// Create a CoordinateMatrix from the RDD
val coordMatrix = new CoordinateMatrix(entries)

= = =
N = O
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Hands-On: Building User-ltem Matrix from Logs

Scenario: Web click logs — Sparse user-item interaction matrix

CSV: user_id, item_id, rating

val logs = sc.textFile("hdfs://data/user_clicks.csv")

val entries = logs.map { line =>
val parts = line.split(",")
MatrixEntry (parts (0).toLong, parts(1l).tolong, parts(2).toDouble)

val userItemMatrix = new CoordinateMatrix(entries)
println(s"Matrix: ${userItemMatrix.numRows ()} x ${userItemMatrix.numCols ()}")

100M users x 10M items = 1 quadrillion entries
@ Dense storage: 8 TB
@ Sparse storage (0.02% non-zero): 16 GB
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Operations on CoordinateMatrix

Computing Matrix Statistics

1 // Count ratings per user (row-wise)
2 val ratingsPerUser = userItemMatrix.entries
3 .map(e => (e.i, 1)).reduceByKey(_ + _)
4
5 // Find most active user
6 val mostActive = ratingsPerUser.maxBy(_._2)
7
8 // Average rating per item (column-wise)
9 val avgRatingPerItem = userItemMatrix.entries
10 .map(e => (e.j, (e.value, 1)))
11 .reduceByKey((a, b) => (a._1 + b._1, a._2 + b._2))
12 .mapValues { case (sum, cnt) => sum / cnt }
13
o

Key Insight: Each reduceByKey = shuffle = data movement!
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The Big Challenge: Distributed SpGEMM

SPGEMM = Sparse General Matrix-Matrix multiplication (C = AB).
@ Core operation: graph algorithms, collaborative filtering

@ Challenge: A, B, C are too big for one machine

Performance Trap: ‘.multiply() Method
Converting ‘CoordinateMatrix'’ — ‘RowMatrix/BlockMatrix‘ then calling
“multiply()":

@ Internally converts to dense format

@ Sparse matrix: 100 GB — Dense: 100 TB

o Result: OutOfMemoryError

Solution: Implement SpGEMM using map-reduce primitives
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SpGEMM: High-Level Solution

Challenge: Compute C = A x B where matrices are too large for one
machine

Matrix A (2x3) Matrix B (3x2)

(22 :

SO B
o o1 O

Solution Strategy

@ Align: Group elements that will be multiplied together
@ Multiply: Compute products of matching pairs
© Sum: Add all products for each output position
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Key Takeaways

@ Sparsity is everywhere. 99%+ zeros in NLP, recommender systems,
graphs. Exploiting sparsity is essential for scalability.

@ Data structure = performance. COO for building, CSR for rows,
CSC for columns. Choose based on access patterns.

© Distributed sparse ops use map-reduce. SpGEMM shows how
‘map’, ‘join’, and ‘reduceByKey‘ enable scalable algorithms.

Critical Observation

The join operation in SpGEMM is the most expensive step. But what
exactly happens during a join?
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Next Week: Hash Partitioning & Shuffling

Today: Sparse operations rely on joins — shuffles

Next Week Topics:
@ Hash Partitioning: How Spark assigns keys to nodes
@ Shuffle Internals: Map output, network, reduce input
© Skew Problems: When some keys dominate

© Optimizations: Broadcast joins, pre-partitioning

@ Why hash function vs random assignment?

@ What if dimension j in SpGEMM is skewed (1M occurrences)?

@ How to reduce shuffle for repeated AxB operations?
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Questions?
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