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MapReduce – under the hood
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What is shuffling?
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What happens when you do a groupBy or a groupByKey?

move data from one node to another to be "grouped with" its key.

Shuffling is expensive because:

• Network I/O (moving data between nodes).

• Disk I/O when data is too large to fit in memory.

• Serialisation and deserialisation of data.



Example of Shuffling
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We have a list of three ATMs from which customers withdraw money. Now, 

we want to calculate how much each customer has withdrawn in total.



Example of Shuffling
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What is the solution?

Which data needs to be moved between nodes?

What might the cluster look like with this data distributed over it? 



Example of Shuffling
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ATMWithdrawal(1, 101, 200)

ATMWithdrawal(2, 102, 150)
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ATMWithdrawal(2, 102, 50)
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(1, [200, 100])
(2, [150, 250, 
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(3, [300, 400])
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Can we make it better?
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reduceByKey combines the steps of groupByKey and reduction into one 

operation

Key Advantage: It performs local aggregation

By reducing the dataset first, the amount of data sent over the network during 

the shuffle is greatly reduced. 

This can result in non-trivial gains in performance!



Example of Shuffling
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ATMWithdrawal(1, 101, 200)
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ATMWithdrawal(2, 102, 50)
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When will shuffle occur?
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1. The return type of certain transformations:

2. Using the function toDebugString to see its execution plan:



Where else shuffling?
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1.groupByKey():

➢ Spark needs to move all records with the same key to the same partition.

2.reduceByKey():

➢ Shuffling occurs after local aggregation when Spark needs to move partial 

sums between partitions to calculate the final result.

3.join():

➢ Spark must align keys from two RDDs.

4.distinct():

➢ ensure that duplicate records across partitions are compared and removed.

5.sortByKey():

➢ Spark needs to globally sort data across all partitions.

6.repartition():

➢ redistributing data into a different number of partitions.



What is Partition?
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Key Properties of Partitions:

• Partitions never span multiple machines; all data in a partition stays 

on one machine.

• Each machine in the cluster contains one or more partitions.

• The number of partitions is configurable (default = total number of 

cores across executor nodes).

Types of Partitioning:

1. Hash Partitioning

2. Range Partitioning

Grouping all values of key-value pairs with the same key requires collecting all 

key-value pairs with the same key on the same machine.

But how does Spark know which key to put on which machine?



Hash Partitioning
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How It Works: 

• Hashing customerId: Spark applies a hash function to customerId 

(e.g., 1, 2, 3) to determine the partition.

• Partitioning: Data with the same hash value goes to the same 

partition. Different customerIds go to different partitions based on 

their hash.

• Result: All records for a specific key are grouped into a single 

partition based on the hash function, ensuring efficient distribution



Range Partitioning
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How It Works: 

• Spark sorts the keys and divides them into ranges.

• Each partition holds a specific range of keys (e.g., 1-100 in one 

partition, 101-200 in another).

• Efficient for ordered data or when you need to process data within 

specific key ranges.

Example:

Withdrawals Data: If customerIds range from 1-1000, Spark splits this into 

partitions like:

• Partition 1: customerId 1-100

• Partition 2: customerId 101-200

• Partition 3: customerId 201-300



BREAK
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Partitioning Data
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There are two ways to create RDDs with specific partitionings: 

1. Call partitionBy on an RDD, providing an explicit Partitioner. 
• Apply partitionBy() and provide an explicit Partitioner (e.g., Hash or Range).

2. Using transformations that return RDDs with specific partitioners



Persisting Partitioned Data
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Problem:

• After partitionBy(), Spark re-shuffles and recomputes the entire RDD 

every time you perform an action (e.g., count(), collect()).

Solution: Persist!

• Persist()stores the RDD in memory (or disk) after the first computation.



Partitioner Inheritance
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1. Partitioner from Parent RDD

• Pair RDDs resulting from transformations on a partitioned RDD inherit 

the partitioner (usually Hash) from the parent RDD.

2. Automatically-set Partitioners

Some operations automatically apply partitioners when it makes sense:
• sortByKey: Uses a RangePartitioner by default.

• groupByKey: Uses a HashPartitioner by default.



Automatic Partitioners
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Certain operations on Pair RDDs retain and propagate the 

partitioner from the parent RDD:

1. Cogroup

2. groupWith

3. Join, leftOuterJoin, rightOuterJoin

4. groupByKey

5. reduceByKey, foldByKey,combineByKey

6. partitionBy

7. sortmapValues (if parent has a partitioner)

8. flatMapValues (if parent has a partitioner)

9. filter (if parent has a partitioner)

All other operations will produce a result without a partitioner.



Partitioning Example
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Partitioning can bring substantial performance gains, especially in the face 

of shuffles.

Consider an application that keeps a large table of user information in 

memory: 

• userData - BIG, containing (User ID, User Info) pairs, where User Info 

contains a list of topics the user is subscribed to

The application periodically combines this big table with a smaller file 

representing events that happened in the past five minutes

•  events - small, containing (UserID, Linklnfo) pairs for users who have 

clicked a link on a website in those five minutes: 

For example, we can count how many users visited a link that was not to one 

of their subscribed topics. We can perform this combination with Spark's join 

operation, which can be used to group the Userlnfo and Linklnfo pairs for 

each UserID by key. 



Partitioning Example
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Is this OK? 



Partitioning Example
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It will be very inefficient! 

Why? The join operation, called each time processNewLogs is invoked, 

does not know anything about how the keys are partitioned in the datasets



Partitioning Example
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QUESTIONS?
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