Programming for Data Science at Scale

Optimising Distributed Data
Processing

THE UNIVERSITY
of EDINBURGH

Amir Noohi, Fall 2025

MapReduce — under the hood

Shuffle phase

What is shuffling?

What happens when you do a groupBy Or a groupByKey?

val students = sc.parallelize(List(
("A", "Alice"),

"B" ’ ”BO') "),

‘A", "Adam"),

'C", "Charlie"),

'B", "Ben")

))

val groupedStudents = students.groupByKey()

move data from one node to another to be "grouped with" its key.

Shuffling is expensive because:
* Network 1/0 (moving data between nodes).
« Disk I/O when data is too large to fit in memory.
« Serialisation and deserialisation of data.

Example of Shuffling

We have a list of three ATMs from which customers withdraw money. Now,
we want to calculate how much each customer has withdrawn in total.

case class ATMWithdrawal(customerId: Int, atmId: Int, amount: Double)

val withdrawals = sc.parallelize(List(

ATMWithdrawal(1l, 101, 200.0),
ATMWithdrawal(2, 102, 150.0),
ATMWithdrawal(3, 103, 300.0),
ATMWithdrawal(1l, 101, 100.0),
ATMWithdrawal(2, 102, 50.0),
ATMWithdrawal(3, 103, 400.0)

)i 3)

Example of Shuffling

What is the solution?

val totalWithdrawalsPerCustomer = withdrawals

.map(w = (w.customerId, w.amount))
.groupByKey()
.mapValues(amounts = amounts.sum)

What might the cluster look like with this data distributed over it?

Which data needs to be moved between nodes?

Example of Shuffling

ATMWithdrawal(2, 102, 50)

ATMWithdrawal(1, 101, 200) .
ﬁmw!thdrawal(z, 102, 150) ﬁmw:m::x::ﬁ 18:1”: ?88; ATMWithdrawal(3, 103, 400)
ithdrawal(2, 102, 250) ATMWithdrawal(2, 102, 450)
Map
(1, 200) (2, 50)
(3, 300)
3, 400
& 250 (1, 100 o 50
- - GroupByKey
GHIFFEE- ey
(2, [150, 250, (3, [300, 400])

(1, [200, 1001]) 50, 450])

Can we make it better?

reduceByKey combines the steps of groupByKey and reduction into one
operation

Key Advantage: It performs local aggregation

val totalWithdrawalsPerCustomer = withdrawals

.map(w = (w.customerId, w.amount))

.reduceByKey(_ + _)

By reducing the dataset first, the amount of data sent over the network during
the shuffle is greatly reduced.

This can result in non-trivial gains in performance!

Example of Shuffling

ATMWithdrawal(2, 102, 50)

ATMWithdrawal(1, 101, 200) .
ﬁmw!thdrawal(z, 102, 150) ﬁmw:m::x::ﬁ 18:1”: ?88; ATMWithdrawal(3, 103, 400)
ithdrawal(2, 102, 250) ATMWithdrawal(2, 102, 450)
Map
(1, 200) (2, 50)
(3, 300)
3, 400
& 250 (1, 100 o 50
' ' ReduceByKey
{ {
2, 400, 50,
(1, [200, 10017) (E‘EOO]) (3, [300, 4007)

When will shuffle occur?

1. The return type of certain transformations:

org.apache.spark.rdd.RDD[(String, Int)]= ShuffledRDD[1104]

2. Using the function tobebugString to see its execution plan:

partitioned.reduceByKey((vl, v2) = (vl . 1 + v2. 1, vl . 2 + v2. 2))
.toDebugString

res9: String=
(8) MapPartitionsRDD[1104] at reduceByKey at <console>:49 []
| ShuffledRDD[16151] at partitionBy at <console>:48 []
| CachedPartitions: 8; MemorySize: 1754.8 MB; DiskSize: 0.0 B

Where else shuffling?

.groupByKey () :

» Spark needs to move all records with the same key to the same partition.

.reduceByKey () :

» Shuffling occurs after local aggregation when Spark needs to move partial
sums between partitions to calculate the final result.

.jJoin () :

» Spark must align keys from two RDDs.

.distinct () :
» ensure that duplicate records across partitions are compared and removed.

.sortByKey () :
» Spark needs to globally sort data across all partitions.

.repartition{() :

» redistributing data into a different number of partitions.
10

What is Partition?

Grouping all values of key-value pairs with the same key requires collecting all
key-value pairs with the same key on the same machine.

But how does Spark know which key to put on which machine?

Key Properties of Partitions:
« Partitions never span multiple machines; all data in a partition stays
on one machine.
« Each machine in the cluster contains one or more partitions.
« The number of partitions is configurable (default = total number of
cores across executor nodes).

Types of Partitioning:
1. Hash Partitioning
2. Range Partitioning

11

Hash Partitioning

How It Works:

« Hashing customerld: Spark applies a hash function to customerld
(e.g., 1, 2, 3) to determine the partition.

p = k.hashCode() % numPartitions

« Partitioning: Data with the same hash value goes to the same
partition. Different customerlds go to different partitions based on
their hash.

« Result: All records for a specific key are grouped into a single
partition based on the hash function, ensuring efficient distribution

12

Range Partitioning

How It Works:

« Spark sorts the keys and divides them into ranges.

« Each partition holds a specific range of keys (e.g., 1-100 in one
partition, 101-200 in another).

- Efficient for ordered data or when you need to process data within
specific key ranges.

Example:
Withdrawals Data: If customerlds range from 1-1000, Spark splits this into
partitions like:

« Partition 1: customerld 1-100

« Partition 2: customerld 101-200

« Partition 3: customerld 201-300

13

BREAK

14

Partitioning Data

There are two ways to create RDDs with specific partitionings:

1. Call partitionBy on an RDD, providing an explicit Partitioner.
» Apply partitionBy() and provide an explicit Partitioner (e.g., Hash or Range).

val partitionedRDD = rdd.partitionBy(new HashPartitioner(numPartitions))

val rangePartitionedRDD = rdd.partitionBy(new RangePartitioner(numPartitions, rdd))

2. Using transformations that return RDDs with specific partitioners

val reducedRDD = rdd.reduceByKey(_ + _)

15

Persisting Partitioned Data

Problem:

« After partitionBy (), Spark re-shuffles and recomputes the entire RDD
every time you perform an action (e.g., count(), collect()).

Solution: Persist!

* Persist () stores the RDD in memory (or disk) after the first computation.

val partitionedRdd = rdd.partitionBy(new HashPartitioner(100))
partitionedRdd.count()
partitionedRdd.collect()

partitionedRdd.persist()
partitionedRdd.count()
partitionedRdd.collect()

16

Partitioner Inheritance

1. Partitioner from Parent RDD
» Pair RDDs resulting from transformations on a partitioned RDD inherit
the partitioner (usually Hash) from the parent RDD.

val transformedRDD = parentRDD.mapValues(...)

2. Automatically-set Partitioners

Some operations automatically apply partitioners when it makes sense:
 sortByKey: Uses a RangePartitioner by default.
 groupByKey: Uses a HashPartitioner by default.

val sortedRDD = rdd.sortByKey()
val groupedRDD = rdd.groupByKey()

17

Automatic Partitioners

Certain operations on Pair RDDs retain and propagate the
partitioner from the parent RDD:

Cogroup

groupWith

Join, leftOuterJoin, rightOuterJoin
groupByKey

reduceByKey, foldByKey,combineByKey
partitionBy

sortmapValues (if parent has a partitioner)

flatMapValues (if parent has a partitioner)

© © N o a0 k~ 0 Db =

filter (if parent has a partitioner)

All other operations will produce a result without a partitioner.

18

Partitioning Example

Partitioning can bring substantial performance gains, especially in the face
of shuffles.

Consider an application that keeps a large table of user information in

memory:
« userData - BIG, containing (User ID, User Info) pairs, where User Info
contains a list of topics the user is subscribed to

The application periodically combines this big table with a smaller file
representing events that happened in the past five minutes

« events - small, containing (UserID, Linklnfo) pairs for users who have
clicked a link on a website in those five minutes:

For example, we can count how many users visited a link that was not to one
of their subscribed topics. We can perform this combination with Spark's join
operation, which can be used to group the Userinfo and LinkiInfo pairs for
each UserlID by key.

19

Partitioning Example

val sc = new SparkContext(...)
val userData = sc.sequenceFile[UserID, Userlnfol("hdfs:// ... ").persist()

def processNewlogs(logFileName: String) {
val events = sc.sequenceFile[UserID, Linklnfo](logFileName)
val joined = userData.join(events)
val offTopicVisits = joined.filter {
case (userld, (userlnfo, linklnfo)) =
luserlnfo.topics.contains(linklnfo.topic)
}.count()
printin(of visits to non-subscribed topics: + offTopicVisi ts)

Is this OK?

20

Partitioning Example

It will be very inefficient!

Why? The join operation, called each time processNewLogs is invoked,
does not know anything about how the keys are partitioned in the datasets

userData joined events

X

”
N

P

network communication 21

Partitioning Example

val userData = sc.sequenceFile[UserID, Userlnfol]("hdfs:// ... ™)
.partitionBy(new HashPartitioner(100))

.persist()

userData joined events

X
0-00

/

N
network communication

local reference

22

QUESTIONS?

23

	Slide 1
	Slide 2
	Slide 3: What is shuffling?
	Slide 4: Example of Shuffling
	Slide 5: Example of Shuffling
	Slide 6: Example of Shuffling
	Slide 7: Can we make it better?
	Slide 8: Example of Shuffling
	Slide 9: When will shuffle occur?
	Slide 10: Where else shuffling?
	Slide 11: What is Partition?
	Slide 12: Hash Partitioning
	Slide 13: Range Partitioning
	Slide 14: BREAK
	Slide 15: Partitioning Data
	Slide 16: Persisting Partitioned Data
	Slide 17: Partitioner Inheritance
	Slide 18: Automatic Partitioners
	Slide 19: Partitioning Example
	Slide 20: Partitioning Example
	Slide 21: Partitioning Example
	Slide 22: Partitioning Example
	Slide 23: Questions?

