
Programming for Data Science at Scale

Optimising Distributed Data
Processing

Amir Noohi, Fall 2025

2

MapReduce – under the hood

2

Input

data

Split

Split

Map

Map

Reduce

Reduce

<Logic,1>

<will,1>

<get,1>

<Logic,1>

<will,1>

< Image, 1>

<Logic,{1,1}>

<will,{1,1,1}>

<get,{1}>

<take,{1}>

< Image,{1,1}>

<Logic,1>

<will,2>

<get,1>

<take,1>

<Image,1>

…

…

DFS
DFS

Map

phase

Shuffle phase

Sort Send Merge
Reduce

phase

<take,1>

<Image,1>

<will,1>

What is shuffling?

3

What happens when you do a groupBy or a groupByKey?

move data from one node to another to be "grouped with" its key.

Shuffling is expensive because:

• Network I/O (moving data between nodes).

• Disk I/O when data is too large to fit in memory.

• Serialisation and deserialisation of data.

Example of Shuffling

4

We have a list of three ATMs from which customers withdraw money. Now,

we want to calculate how much each customer has withdrawn in total.

Example of Shuffling

5

What is the solution?

Which data needs to be moved between nodes?

What might the cluster look like with this data distributed over it?

Example of Shuffling

6

ATMWithdrawal(1, 101, 200)

ATMWithdrawal(2, 102, 150)

ATMWithdrawal(2, 102, 250)

ATMWithdrawal(3, 103, 300)

ATMWithdrawal(1, 101, 100)

ATMWithdrawal(2, 102, 50)

ATMWithdrawal(3, 103, 400)

ATMWithdrawal(2, 102, 450)

(1, 200)

(2, 150)

(2, 250)

(3, 300)

(1, 100)

(2, 50)

(3, 400)

(2, 450)

(1, [200, 100])
(2, [150, 250,

50, 450])
(3, [300, 400])

Map

GroupByKey
SHUFFLE

Can we make it better?

7

reduceByKey combines the steps of groupByKey and reduction into one

operation

Key Advantage: It performs local aggregation

By reducing the dataset first, the amount of data sent over the network during

the shuffle is greatly reduced.

This can result in non-trivial gains in performance!

Example of Shuffling

8

ATMWithdrawal(1, 101, 200)

ATMWithdrawal(2, 102, 150)

ATMWithdrawal(2, 102, 250)

ATMWithdrawal(3, 103, 300)

ATMWithdrawal(1, 101, 100)

ATMWithdrawal(2, 102, 50)

ATMWithdrawal(3, 103, 400)

ATMWithdrawal(2, 102, 450)

(1, 200)

(2, 150)

(2, 250)

(3, 300)

(1, 100)

(2, 50)

(3, 400)

(2, 450)

(1, [200, 100])
(2, [400, 50,

500])
(3, [300, 400])

Map

ReduceByKey

When will shuffle occur?

9

1. The return type of certain transformations:

2. Using the function toDebugString to see its execution plan:

Where else shuffling?

10

1.groupByKey():

➢ Spark needs to move all records with the same key to the same partition.

2.reduceByKey():

➢ Shuffling occurs after local aggregation when Spark needs to move partial

sums between partitions to calculate the final result.

3.join():

➢ Spark must align keys from two RDDs.

4.distinct():

➢ ensure that duplicate records across partitions are compared and removed.

5.sortByKey():

➢ Spark needs to globally sort data across all partitions.

6.repartition():

➢ redistributing data into a different number of partitions.

What is Partition?

11

Key Properties of Partitions:

• Partitions never span multiple machines; all data in a partition stays

on one machine.

• Each machine in the cluster contains one or more partitions.

• The number of partitions is configurable (default = total number of

cores across executor nodes).

Types of Partitioning:

1. Hash Partitioning

2. Range Partitioning

Grouping all values of key-value pairs with the same key requires collecting all

key-value pairs with the same key on the same machine.

But how does Spark know which key to put on which machine?

Hash Partitioning

12

How It Works:

• Hashing customerId: Spark applies a hash function to customerId

(e.g., 1, 2, 3) to determine the partition.

• Partitioning: Data with the same hash value goes to the same

partition. Different customerIds go to different partitions based on

their hash.

• Result: All records for a specific key are grouped into a single

partition based on the hash function, ensuring efficient distribution

Range Partitioning

13

How It Works:

• Spark sorts the keys and divides them into ranges.

• Each partition holds a specific range of keys (e.g., 1-100 in one

partition, 101-200 in another).

• Efficient for ordered data or when you need to process data within

specific key ranges.

Example:

Withdrawals Data: If customerIds range from 1-1000, Spark splits this into

partitions like:

• Partition 1: customerId 1-100

• Partition 2: customerId 101-200

• Partition 3: customerId 201-300

BREAK

14

Partitioning Data

15

There are two ways to create RDDs with specific partitionings:

1. Call partitionBy on an RDD, providing an explicit Partitioner.
• Apply partitionBy() and provide an explicit Partitioner (e.g., Hash or Range).

2. Using transformations that return RDDs with specific partitioners

Persisting Partitioned Data

16

Problem:

• After partitionBy(), Spark re-shuffles and recomputes the entire RDD

every time you perform an action (e.g., count(), collect()).

Solution: Persist!

• Persist()stores the RDD in memory (or disk) after the first computation.

Partitioner Inheritance

17

1. Partitioner from Parent RDD

• Pair RDDs resulting from transformations on a partitioned RDD inherit

the partitioner (usually Hash) from the parent RDD.

2. Automatically-set Partitioners

Some operations automatically apply partitioners when it makes sense:
• sortByKey: Uses a RangePartitioner by default.

• groupByKey: Uses a HashPartitioner by default.

Automatic Partitioners

18

Certain operations on Pair RDDs retain and propagate the

partitioner from the parent RDD:

1. Cogroup

2. groupWith

3. Join, leftOuterJoin, rightOuterJoin

4. groupByKey

5. reduceByKey, foldByKey,combineByKey

6. partitionBy

7. sortmapValues (if parent has a partitioner)

8. flatMapValues (if parent has a partitioner)

9. filter (if parent has a partitioner)

All other operations will produce a result without a partitioner.

Partitioning Example

19

Partitioning can bring substantial performance gains, especially in the face

of shuffles.

Consider an application that keeps a large table of user information in

memory:

• userData - BIG, containing (User ID, User Info) pairs, where User Info

contains a list of topics the user is subscribed to

The application periodically combines this big table with a smaller file

representing events that happened in the past five minutes

• events - small, containing (UserID, Linklnfo) pairs for users who have

clicked a link on a website in those five minutes:

For example, we can count how many users visited a link that was not to one

of their subscribed topics. We can perform this combination with Spark's join

operation, which can be used to group the Userlnfo and Linklnfo pairs for

each UserID by key.

Partitioning Example

20

Is this OK?

Partitioning Example

21

It will be very inefficient!

Why? The join operation, called each time processNewLogs is invoked,

does not know anything about how the keys are partitioned in the datasets

Partitioning Example

22

QUESTIONS?

23

	Slide 1
	Slide 2
	Slide 3: What is shuffling?
	Slide 4: Example of Shuffling
	Slide 5: Example of Shuffling
	Slide 6: Example of Shuffling
	Slide 7: Can we make it better?
	Slide 8: Example of Shuffling
	Slide 9: When will shuffle occur?
	Slide 10: Where else shuffling?
	Slide 11: What is Partition?
	Slide 12: Hash Partitioning
	Slide 13: Range Partitioning
	Slide 14: BREAK
	Slide 15: Partitioning Data
	Slide 16: Persisting Partitioned Data
	Slide 17: Partitioner Inheritance
	Slide 18: Automatic Partitioners
	Slide 19: Partitioning Example
	Slide 20: Partitioning Example
	Slide 21: Partitioning Example
	Slide 22: Partitioning Example
	Slide 23: Questions?

