
Introduction to Theoretical Computer Science

Exercise Sheet: Week 7 – Solutions

(1) The basic claim was that polynomial problems are ‘easy’, and non-polynomial
problems are hard. Consider f(n) = n1010 , and g(n) = 10n/1010 . Show that
f(n) ∈ o(g(n)). (Recall this means that ∀ε > 0.∃n0.∀n > n0.|f(n)| ≤
ε|g(n)|.) (Hint: take logs, and remember that you only have to care about
large enough n.) Where does g catch up with f?

Given ε, we want to find where f(n) ≤ εg(n), i.e. n1010 ≤ ε · 10n/1010.
This is not soluble in closed form, so let’s just find n big enough. Tak-
ing logs, 1010 log n ≤ log ε + n/1010. Divide by log n to get 1010 ≤
log ε/ log n+(n/ log n)/1010. If we take n ≥ 1/ε, then −1 ≤ log ε/ log n ≤
0, so now we just need (n/ log n) ≥ (1010+1)·1010, so taking n/ log n ≥
max(1/ε, 1021) will certainly do.

The point where g(n) = f(n) is best found numerically, and is about
2.133× 1021, pretty much where the above proof put it for ε = 1.
Bonus: Where does the statement f(n) ∈ o(g(n)) fit in the arithmeti-

cal hierarchy that we discussed unofficially? (Trick question!)
It’s a trick question because as presented ε is a real, so this is not

an arithmetical statement. However, we can replace ∀ε > 0. . . . ε . . . by
∀N > 0. . . . 1/N . . . to get an equivalent arithmetical statement, which
is in Π0

3.
(2) We defined the class P in terms of polynomially bounded machines. Ex-

plain how to implement this definition. That is, given a register machine
M (taking input R in R0 as usual), explain how to construct a machine
M ′ which takes inputs R and k, and behaves like M except that it halts
after (lgR)k steps of M ’s execution.

M ′ first computes (lgR)k, by repeated division by 2 (and division by 2
is itself repeated subtraction) and brute force exponentiation (note that
we don’t care how long this takes since k is a constant), and stashes it
in a dedicated register R−1 (or whatever). M ′ now jumps to a program
that is the program of M , except that every instruction I is replaced by
the sequence decjz(−1,halt); I, with labels adjusted appropriately.

(3) Show that the Halting problem is not NP-complete. (This is obvious . . .
but can you prove it?)

Suppose it is. Then there is a non-deterministic Turing/Register Ma-
chine M and a polynomial time bound f(n) in the size of the input
machine such that M determines the halting answer before time f(n).
Let k be the maximum branching degree of the control graph of M –
this is at most 2 for an NRM, or (number of states) for an NTM. Then
we can simulate M deterministically by interleaving, in time O(kf(n)),
and thus solve the halting problem.

1

The following is a reasonably tricky algorithm design problem.

(4) 2-SAT is the following problem: given a set of boolean variables Xi, and
a formula φ =

∧
1≤j≤n(αj ∨ βj), where each αj, βj is a literal, i.e., either

a variable or a negated variable, is there a satisfying assignment for φ?
Show that 2-SAT is polynomial (unlike SAT or 3-SAT). (Quite difficult.

Hint: look for two clauses that contain a variable and its negation (e.g.
(X ∨ Y) and (Z ∨ ¬Y)), merge them into a single clause, and add it to
the formula.)

A proof by using resolution: If a variable only occurs positively
in φ, we may as well set it to true and forget about it (removing any
clauses in which it occurs); if only negatively, set it to false, and forget
about it (removing it from any clause in which it occurs, leaving just
the other disjunct). So we’re left with variables that occur both positively
and negatively. Clearly, if we now have a clause (Y) and a clause (¬Y),
we can’t satisfy φ. So suppose we still have two-literal disjuncts, so, for
example, (α ∨ Y) and (β ∨ ¬Y). If these are jointly satisfiable, then
we can also satisfy α ∨ β, so resolve by adding (α ∨ β) to φ (and
conversely, if they’re not jointly satisfiable, adding the clause does no
harm). Repeat until there are no such pairs remaining unresolved. If at
any point we end up with a clause (Y) and a clause (¬Y) for some Y ,
we can’t satisfy; otherwise we can. This takes polynomial time (about
n4).
An alternative proof via graph theory: Every clause can be

written as an implication (α ⇒ β) where α, β are literals. Consider a
graph where the vertices are literals and directed edges describe these
implications. The formula is satisfiable if we never have that α ⇒ ¬α
for any literal α. This is the case if and only if, in every strongly con-
nected component of the graph a literal does not appear both positively
and negatively.

2

