THE UNIVERSITY
of EDINBURGH

Text Technologies for Data Science
INFR11145

Indexing

Instructor:
Walid Magdy

01-Oct-2025

2

Lecture Objectives

* Learn about and implement
* Boolean search

* |Inverted index
* Positional index

@ THE UNIVERSITY
Walid Magdy, TTDS 2025/2026 "8y of EDINBURGH

10/1/25

Walid Magdy, TTDS 2025/2026

Indexing Process

document = unique ID
what can you store?
disk space? rights?

compression?

Index
creation 9

a loglgset8Dle for
quickly finding all docs
containing a word

Document

web-crawling P
ata store

provider feeds
RSS “feeds”
desktop/email ’
- Documents
acquisition

what data
do we want?

P Text
rsu sformation

format conver:gc'e rnational?

which part contains ing”?

ord units? stopping? stem

© Addison Wesley, 2008

SA®Y. THE UNIVERSITY
)= of EDINBURGH

Walid Magdy, TTDS 2025/2026

4

Pre-processing output

This is an example sentence of how the pre-processing is
applied to text in information retrieval. It includes: Tokenization,
Stop Words Removal, and Stemming

exampl sentenc pre process appli text inform retriev includ
token stop word remov stem

* Add processed terms to index
* What is “index”?

SA®Y. THE UNIVERSITY
)= of EDINBURGH

10/1/25

Index

* How to match your term in non-linear time?

* Find/Grep:

Sequential search for term

* |Index:

Find term locations immediately

THE UNIVERSITY
of EDINBURGH

Book Index

Index

absolute error, 437

accuracy, 359

ad hoc search, 3,280, 423

adaptive filtering, 425

adversarial information retrieval, 294

advertising, 218,371
classifying, 371
contextual, 218-221

agglomerative clustering, 375

anchor text, 21, 56, 105, 280

APL, 439, 461

architecture, 13-28

authority, 21, 111

automatic indexing, 400

background probability, see collection
probability

bag of words, 345, 451

Bayes classifier, 245

Bayes Decision Rule, 245

Bayes' Rule, 246,343

Bayes' rule, 342

Bayesian necwork, 268

bibliometrics, 120

bidding, 218

bigram, 100, 253

BigTable, 57

binary independence model, 246
blog, 111

BM25,250-252

BM25F, 294

Boolean query, 235
Boolean query language, 24
Boolean retrieval, 235-237
boosting, 448

BPREF, 322

brute force, 331

burstiness, 254

caching, 26, 181
card catalog, 400
case folding, 87
case normalization, 87
categorization, see classification
CBIR, see content-based image retrieval
character encoding, 50, 119
checksum, 60
Chi-squared measure, 202
CJK (Chinese-Japanese-Korean), 50, 119
classification, 3, 339-373
faceted, 224
monoheric, 223, 374
polytheric, 223, 374
classifier, 21

512 Index

click(hmugh. 6,27,207, 285,306

CLIR, see cross-language information
retrieva

cluster hypothesis, 389

cluster-based recrieval, 391

222-225,339,373

, 74,191

clustering, 2:
co-occurren:
code page, 50

collaborative filtering, 432
collaborative search, 420
collection, 3

collection language model, 256
collection probability, 256, 440
collocation, 74

color histogram, 473
combining evidence, 267-283
combining searches, 441

CombMNZ, 441

community-based question answering,

complete-link clusters, 379
compression, 54

lossless, 141

lossy. 142
conditional random field, 122
conflation, see stemming
connected component, 192
content match, 371
content-based image retrieval, 473
context, 115,201, 211-214
context vector, 206, 464
contingency table, 248
controlled vocabulary, 199, 401
conversion, 49
coordination level match, 257
corpus, 6
cosine correlation, 239
coverage, 8

CQA. 415

crawler, 17, 32

cross-language information retrieval, 226

cross-lingual search, see cross-language
information retrieval

cross-validation, 331

Damerau-Levenshtein distance, 194
dangling link, 107

data mining, 113

database system, 459

DCG, see discounted cumulative gain
deep Web, 41, 448

delta encoding, 144

dendrogram, 375

deskrop search, 3, 46

Dice’s coefficient, 192

digital reference, 447

Dirichlet smoothing, 258

discounted cumulative gain, 319
discriminative model, 284, 360

distance measure, 374

distributed hash table, 445

distributed information retrieval, 438
distribution. 23

divisive clustering, 375

document, 2

document conversion, 18

document crawler, 17

document data store, 19

document distribution, 180

document slope curve, 64

document statistics, 22

document structure, 101, 269, 459-466
document summary, 215

downcasing, 87

dumping, 366

duplicate documents, 60

dwell time, 27

dynamic page, 42

v THE UNIVERSITY
of EDINBURGH

10/1/25

Indexing

e Search engines vs PDF find or grep?
* Infeasible to scan large collection of text for every “search”

* Find section that has: “UK and Scotland and Money”?!
* Book Index

* For each word, list of “relevant” pages

* Find topic in sub-linear time
* IR Index:

* Data structure for fast finding terms
* Additional optimisations could be applied

@ THE UNIVERSITY

&Y' o EDINBURGH
7
Document Vectors
* Represent documents as vectors
* Vector - document, cell > term
* Values: term frequency or binary (0/1)
* All documents - collection matrix
= X v
£ + 8 € £ =
£ s E£E=435 <€
(2 1 0 2 0 0 1 |€¢ D1:Helikesto wink, he likes to drink
(1 3.0 1 0 0 0 |€¢ D2:Helikesto drink, and drink, and drink
(1 1 11 0 1 0 |€¢ D3:Thethinghe likes to drinkis ink
(1 1 1 1 10 0 |€ D4 Theink he likes to drinkis pink
(1 1 1 1 1 0 1 |< D5:Helikesto wink, and drink pink ink
number of occurrence of
a term in a document
B JHRRE"
8

10/1/25

Inverted Index

* Represent terms as vectors
* Vector - term, cell > document
* Transpose of the collection matrix
* Vector: inverted list

=

SEVEEE
2|[1][o][2]|[0]|0]|1]|€ D1: He likes to wink, he likes to drink
1//3|/0/|1/|/0/]|0]||O]é D2: He likes to drink, and drink, and drink
1{|1(|2|[1]|0]|[2][0]]€ D3: The thing he likes to drink is ink
1/|1{[1]||2[|21]||0[]|0[]€< D4: The ink he likes to drink is pink
1/|1(|2|[2]|1]||0]|[1]|]|< D5:He likes to wink, and drink pink ink

8 R

9

Boolean Search

* Boolean: exist / not-exist
* Multiword search: logical operators (AND, OR, NOT)

* Example
* Collection: search Shakespeare's Collected Works
* Boolean query: Brutus AND Caesar AND NOT Calpurnia

* Build a Term-Document Incidence Matrix
* Which term appears in which document

* Rows are terms
* Columns are documents

@ THE UNIVERSITY
Walid Magdy, TTDS 2025/2026 "8y of EDINBURGH

10

10/1/25

10/1/25

L] -
Collection Matrix
Julius Caesar The Tempest Othello Macbeth

(" Antony 1 \ 1 0 0 0 1
| Brutus 1 0 1 0 0
| Caesar 1 1 0 1 1 1)
[Calpurnia 0 1 0 0 \ 0 0]

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

_ worser 1 0 1 1 0
1 if document contains term, 0 otherwise

Query: Brutus AND Caesar AND NOT Calpurnia
Apply on rows: 110100 AND 110111 AND !(010000) = 100100

@ THE UNIVERSITY
Walid Magdy, TTDS 2025/2026 "8y of EDINBURGH

11

termx

Bigger collections?

* Consider N = 1 million documents,
each with about 1000 words.

n=1M x 1K = 1B words
= Heap’s law -2 v = 500K

Matrix size = 500K unique terms x 1M documents
= 0.5 trillion 0’s and 1’s entries!

If all words appear in many documents
- max{count(1’s)} = N * doc. length = 1B

Actually, from Zip’s law - 250k terms appears once!

[J
. P00 0000000-0000000000000000==000 =

Collection matrix is extremely sparse. (mostly 0’s)

@ THE UNIVERSITY
Walid Magdy, TTDS 2025/2026 {68 o/ EDINBURGH

12

Inverted Index: Sparse representation

* For each term t, we must store a list of all documents
that contain t.
* |dentify each by a docID, a document serial number

we——">[T [2 | 4 |11 | 31 | 45 i3 |

w1 [2 | 4] 5 [6 | 165 [32 |
- —_—_———————————————————————————— U

e wu e R—

Doc number
(sorted)

Walid Magdy, TTDS 2025/2026

SA®Y. THE UNIVERSITY
Né) o EDINBURGH

13

Inverted Index Construction

Documents to o
Hicls i
be indexed = @) ’ Friends, Romans, countrymen

| :
[]
[]

g1

Token stream l ’Friends H Romans H Countrymen ‘
Terms (modified tokens) l ’ friend H roman H countryman ‘

] o—r>[1 2}~
[countyman Jso—=>[3 |-{9|

o

@ THE UNIVERSITY
Walid Magdy, TTDS 2025/2026 {68 o/ EDINBURGH

Inverted index

14

10/1/25

Term docID
L] | 1
Step 1: Term Sequence 1
enact 1
julius 1
caesar 1
| 1
was 1
Doc1 killed 1
i' 1
. . thi 1
| did enact Julius Caesar | was c:pitol 1
killed i' the Capitol; Brutus killed brutus 1
me. S killed 1
equence of me 1
(term, Doc ID) pairs so 2
> let 2
it 2
Doc 2 be 5
with 2
So let it be with Caesar. The cacsar 2
noble Brutus hath told you noble 2
Caesar was ambitious brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2
* THE UNIVERSITY
Walid Magdy, TTDS 2025/2026 > of EDINBURGH
15
Term docID Term docID
- - | 1 ambitious 2
tep 2: Sorting : o :
enact 1 brutus 1
julius 1 brutus 2
o] caesar 1 capitol 1
S o rt by " ! 1 caesar 1
was 1 caesar 2
1 T killed 1 caesar 2
e rm i' 1 did 1
the 1 enact 1
then capitol 1 hath 1
brutus 1 | 1
2 D I D killed 1 | 1
1 . i 1
) ocC - , Sorting |)
let 2 julius 1
it 2 killed 1
be 2 killed 1
with 2 let 2
caesar 2 me 1
the 2 noble 2
noble 2 so 2
brutus 2 the 1
hath 2 the 2
told 2 told 2
you 2 you 2
caesar 2 was 1
was 2 was 2
ambitious 2 with 2
- THE UNIVERSITY
Walid Magdy, TTDS 2025/2026 of EDINBURGH
16

10/1/25

Walid Magdy, TTDS 2025/2026

17

Step 3: Posting

1. Multiple term entries in
a single document are

merged

2. Split into Dictionary and

Postings

3. Doc. Frequency (df)
information is added

Term docID

ambitious
be
brutus
brutus
capitol
caesar
caesar
caesar
did
enact
hath

|

|

i

it
julius
killed
killed
let
me
noble
so
the
the
told
you
was
was
with

—

2
2
1
2
1
1
2
2
1
1
1
1
1
1
2
1
1
1
2
1
2
2
1
2
2
2
1
2
2

term doc. freq.

ambitious

J

1

postings lists

be|1

brutus

N

L

capitol

caesar

did | 1

:

= =] = ®
zl3
g
Ll (= | YO
I Bl -+
=
-]

=

julius

killed

o

3|z
Hr—l

>
]
=
©

H

AED

Q_CD
-]

[

you

=

2
o
wn
N}

—_

-[2]
-[2]

-[2]

-[2]

T e e

2]
2]
1]
1]
1]
1]
1]
2]
[1]
1]
2]
1]
1]
2]
1]
2]
[2]
1]
2]
[2]
1]
2]

€9\ THE UNIVERSITY
Y- of EDINBURGH

Walid Magdy, TTDS 2025/2026

18

Inverted Index: matrix = postings

k

© © r»r O Ofthink

kes

[
<=

he

drink
ink
pink
thing
wink

drink

= B B O O|jnk

pin

=

£

H
< D1
< D2
< D3

< D5

[—
] —

: He likes to wink, he likes to drink
: He likes to drink, and drink, and drink
: The thing he likes to drink is ink
< D4: The ink he likes to drink is pink

: He likes to wink, and drink pink ink

(2103114][5
12103104][5]

[

\- THE UNIVERSITY
J: of EDINBURGH

10/1/25

Inverted Index: with frequency

* Boolean: term - DoclDs list
* Frequency: term - tuples (DoclD,count(term)) lists

he w——> |1:2 2:1 3:1 4:1 5:1
drink w——> | 1:1 2:3 3:1 4:1 5:1
ink o—> 3.1 ||4:1 |57~
pink w——> 41 5-1
thing w——> |3.; appeared in
wink wo——> 11 51 D2 3 times
8 iR
19
Query Processing
* Find documents matching query {ink AND wink}
1. Load inverted lists for each query word
2. Merge two postings lists > Linear merge
* Linear merge = O(n)
n: total number of posts for all query words
Matches
_ 5 1: (0,1)
ink w—>|3:1 ||4:1 ||5:1 3:1(1.,0)
wink o——> 1.1 ||5: 4:(1,0)
@ 5: f(1,1)
80 JERRRT
20

10/1/25

10

Phrase Search

* Find documents matching query “pink ink”
1. Find document containing both words

2. Both words has to be a phrase

* Bi-gram Index:

He likes to wink, and drink pink ink _Convert to bigrams

He_likes likes_to to_wink wink_and and_drink drink_pink pink_ink

* Bi-gram Index, issues:
* Fast, but index size will explode!
* What about trigram phrases?
* What about proximity? “ink is pink”

%Y. THE UNIVERSITY

&) o EDINBURGH

Walid Magdy, TTDS 2025/2026

21

Proximity Index

* Terms positions is embedded to the inv. Index
* Called proximity/positional index
* Enables phrase and proximity search
* Tuples (DoclD, term position)
D1: He likes to wink, he likes to drink
he ”U:>’ 1:2 HZ:] H 3:1 H4:1 H 5:1 ‘ D2: He likes to(drink, and(drink) and(drink
drink v——>1:1]]2:3|3:1][4:1][5:1]

!

he n—>[1,1][1,5/[2,1
drink m——>| 1,8 2,4} 2,6

Walid Magdy, TTDS 2025/2026

THE UNIVERSITY
@Y of EDINBURGH

22

10/1/25

11

Query Processing: Proximity

* Find documents matching query “pink ink”
1. Use Linear merge
2. Additional step: check terms positions

* Proximity search:
pos(term1) — pos(term2) < |w| > #5(pink,ink)

% Matches

3:1(1,0)= 0

ink w——> (38 4,2 5.8
. 4:f1,1)=7?=
pink w——> 148 ||5 7 pos(ink) — pos(pink) == 1?
@ 5:f(1,1)=2?=
pos(ink) — pos(pink) == 17?
@ THE UNIVERSITY

23

Query Processing: Simple implementation

* For each term in query - retrieve posting list

AND - Intersection (N) between posting lists
OR - Union (U) of posting lists

NOT - inverse of posting list (all docs not in the list)
* Usually only combined with AND operator.

Phrase search - AND + check pos2-pos1 ==

Proximity search - AND + check |pos2-pos1| < n

@ THE UNIVERSITY
Walid Magdy, TTDS 2025/2026 {68 o/ EDINBURGH

24

10/1/25

12

10/1/25

Proximity search: data structure

* Possible data structure:
<term: df;
DocNo: pos1, pos2, pos3
DocNo: pos1, pos2, pos3

* Example:
<scotland: 25;
94: 212
351: 23,34,1354,1779,1838
370: 981
3330: 115
3334: 121,316
3532: 59,111,162,265 ...>

@ THE UNIVERSITY
Walid Magdy, TTDS 2025/2026 "8y of EDINBURGH
25
Practical
@ THE UNIVERSITY
Walid Magdy, TTDS 2025/2026 &Y of EDINBURGH

26

13

Walid Magdy, TTDS 2025/2026

27

Summary

* Document Vector

Term Vector

Inverted Index

Collection Matrix

Posting

Proximity Index

Query Processing - Linear merge

SA®Y. THE UNIVERSITY
Né) o EDINBURGH

Resources

* Textbook 1: Intro to IR, Chapter 1 & 2.4
* Textbook 2: IR in Practice, Chapter 5
°* Lab?2

Walid Magdy, TTDS 2025/2026

28

SA®Y. THE UNIVERSITY
Né) o EDINBURGH

10/1/25

14

