

Text Technologies for Data Science INFR11145

Ranked IR

Instructor: Walid Magdy

8-Oct-2025

1

Lecture Objectives

- · Learn about Ranked IR
 - TFIDF
 - VSM
 - SMART notation
- Implement:
 - TFIDF

Walid Magdy, TTDS 2025/2026

Boolean Retrieval

- Thus far, our gueries have all been Boolean.
 - Documents either: "match" or "no match".
- Good for <u>expert users</u> with precise understanding of their needs and the collection.
 - Patent search uses sophisticated sets of Boolean queries and check hundreds of search results (car OR vehicle) AND (motor OR engine) AND NOT (cooler)
- Not good for the majority of users.
 - Most incapable of writing Boolean queries.
 - Most don't want to go through 1000s of results.
 - This is particularly true for web search
 - Question: What is the most unused web-search feature?

THE UN

3

Ranked Retrieval

- Typical queries: free text queries
- Results are "ranked" with respect to a query
- · Large result sets are not an issue
 - We just show the top k (≈ 10) results
 - We don't overwhelm the user
- Criteria:
 - Top ranked documents are the most likely to satisfy user's query
 - Score is based on how well documents match a query Score(d,q)

Old Example

- Find documents matching query {ink wink}
 - 1. Load inverted lists for each query word
 - 2. Merge two postings lists → Linear merge
- Apply function for matches
 - Boolean: exist / not exist = 0 or 1

• Ranked: $f(tf, df, length,) = 0 \rightarrow 1$ Matches

1: f(0,1)

ink □ 3:1 4:1 5:1 3: f(1,0)

5:1

4: f(1,0)

5: f(1,1)

Walid Maadu, TTDS 2025/2026

wink

THE UNIVERSITY
of EDINBURGH

5

Function example: Jaccard coeffecient

- a commonly used measure of overlap of two sets A and B
- $jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|}$

D1: He likes to wink, he likes to drink **D2:** He likes to drink, and drink, and drink

- jaccard(A, A) = 1
- jaccard(A, B) = 0, if $A \cap B = 0$
- Example:
 - D1 ∪ D2 = {he, likes, to, wink, and, drink}
 - D1 \cap D2 = {he, likes, to, drink}
 - $jaccard(D1, D2) = \frac{4}{6} = 0.6667$

THE UNIVERSITY of EDINBURGH

Jaccard coefficient: Issues

- Does not consider term frequency (how many times a term occurs in a document)
- It treats all terms equally!
 - How about rare terms in a collection? more informative than frequent terms.
 - He likes to drink, shall "to" == "drink"?
- Needs more sophisticated way of length normalization
 - |D1| = 3, |D2| = 1000!
 - D1 \rightarrow Q, D2 \rightarrow D

Walid Magdy, TTDS 2025/2026

Should terms be treaded the same?

- Collection of 5 documents (balls = terms)
- Query

Which is the most relevant document?

TFIDF

- TFIDF:
 <u>Term Frequency</u>, Inverse <u>Document Frequency</u>
- tf(t,d): number of times term t appeared in document d
 - As $tf(t,d) \uparrow \uparrow \rightarrow$ importance of t in $d \uparrow \uparrow$
 - Document about IR, contains "retrieval" more than others
- *df(t)*:

number of documents term t appeared in

- As $df(d) \uparrow \uparrow \rightarrow$ importance if t in a collection $\downarrow \downarrow$
 - "the" appears in many document → not important
 - "FT" is not important word in financial times articles

Walid Maadu, TTDS 2025/2026

9

DF, CF, & IDF

- **DF** ≠ **CF** (collection frequency)
 - cf(t) = total number of occurrences of term t in a collection
 - $df(t) \le N$ (N: number of documents in a collection)
 - *cf(t)* can be ≥ *N*
- DF is more commonly used in IR than CF
 - CF is still used
- *idf(t)*: inverse of *df(t)*
 - As $idf(t) \uparrow \uparrow \rightarrow rare term \rightarrow importance \uparrow \uparrow$
 - *idf(t)* → measure of the informativeness of *t*

DF vs CF

1 ← **D1**: He likes to wink, he likes to drink

← D2: He likes to drink, and drink, and drink

← D3: The thing he likes to drink is ink

← **D4:** The ink he likes to drink is pink

← **D5:** He likes to wink, and drink pink ink

5 5 3 5 2 1 2 DF 6 7 3 6 2 1 2 CF

Walid Magdy, TTDS 2025/2026

THE UNIVERSITY of EDINBURGH

11

IDF: formula

$$idf(t) = log_{10}(\frac{N}{df(t)})$$

Log scale used to dampen the effect of IDF

• Suppose *N* = 1 million →

term	df(t)	idf(t)
calpurnia	1	6
animal	100	4
sky	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

Walid Magdy, TTDS 2025/2026

TFIDF term weighting

- One the best known term weights schemes in IR
 - Increases with the number of occurrences within a document
 - · Increases with the rarity of the term in the collection
- Combines TF and IDF to find the weight of terms

$$w_{t.d} = \left(1 + log_{10}tf(t,d)\right) \times log_{10}\left(\frac{N}{df(t)}\right)$$

• For a query q and document d, retrieval score f(q,d):

$$Score(q,d) = \sum_{t \in q \cap d} w_{t.d}$$

Walid Magdy, TTDS 2025/2026

13

Document/Term vectors with tfidf

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

→ Vector Space Model

Vector Space Model

- Documents and Queries are presented as vectors
- Match (Q,D) = Distance between vectors
- Example: Q= Gossip Jealous
- Euclidean Distance? Distance between the endpoints of the two vectors

- Take a document d and append it to itself. Call this document d'.
 - "Semantically" d and d' have the same content
 - Euclidean distance can be quite large

Walid Magdy, TTDS 2025/2026

15

Angle Instead of Distance

- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.
 - Rank documents in increasing order of the angle with query
 - Rank documents in decreasing order of cosine (query, document)
- Cosine of angle = projection of one vector on the other

Walid Magdy, TTDS 2025/2026

Length Normalization

 A vector can be normalized by dividing each of its components by its length – for this we use the L₂ norm:

$$\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$$

- Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

Walid Magdy, TTDS 2025/2026

17

Example

• D1 =
$$\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$
 $\rightarrow \|\overrightarrow{D1}\|_2 = \sqrt{1+9+4} = 3.74$

•
$$D1_{normalized} = \begin{bmatrix} 0.267 \\ 0.802 \\ 0.535 \end{bmatrix}$$

• D2 =
$$\begin{bmatrix} 3 \\ 9 \\ 6 \end{bmatrix}$$
 $\rightarrow \|\overrightarrow{D1}\|_2 = \sqrt{9 + 81 + 36} = 11.25$

•
$$D2_{normalized} = \begin{bmatrix} 0.267 \\ 0.802 \\ 0.535 \end{bmatrix}$$

Cosine "Similarity" (Query, Document)

 $\vec{v}(d_1)$

 $\vec{v}(q)$

 $\vec{v}(d_2)$

 $\vec{v}(d_3)$

- \vec{q}_i is the tf-idf weight of term i in the query
- \vec{d}_i is the tf-idf weight of term i in the document

$$\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

• For non-normalized vectors:

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{\|\vec{q}\| \|\vec{d}\|} = \frac{\vec{q}}{\|\vec{q}\|} \cdot \frac{\vec{d}}{\|\vec{d}\|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$
THE UNIVERS

Walid Magdy, TTDS 2025/2026

19

Algorithm

CosineScore(q)

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 **for each** query term t
- 4 **do** calculate $w_{t,q}$ and fetch postings list for t
- for each $pair(d, tf_{t,d})$ in postings list
- 6 **do** $Scores[d] += w_{t,d} \times w_{t,q}$
- 7 Read the array Length
- 8 for each d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 **return** Top *K* components of *Scores*[]

- Many search engines allow for different weightings for queries vs. documents
- SMART Notation: use notation ddd.qqq, using the acronyms from the table
- A very standard weighting scheme is: Inc.Itc

Walid Magdy, TTDS 2025/2026

THE UNIVERSITY of EDINBURGH

21

For Lab and CW

Term f	frequency	Docum	ent frequency	Nor	malization
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df_t}}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\text{max}\{0, \text{log} \frac{\textit{N}-\mathrm{d} f_t}{\mathrm{d} f_t}\}$	u (pivoted unique)	1/u
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t \in d}(tf_{t,d}))}$				

"OR" operator, then:

$$Score(q,d) = \sum_{t \in q \cap d} \left(1 + log_{10}tf(t,d)\right) \times log_{10}(\frac{N}{df(t)})$$

Walid Magdy, TTDS 2025/2026

Summary of Steps:

- Represent the query as a weighted *tf-idf* vector
- Represent each document as a weighted *tf-idf* vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

Walid Magdy, TTDS 2025/2026

23

Retrieval Output

• For a query q_1 , the output would be a list of documents ranked according to the $score(q_1, d)$

score

• Possible output format:

```
1, 710, 0.9234
```

 $_{1}$, 13_{k} 0.6556_{k}

document id

1, 501, 0.4301

Walid Magdy, TTDS 2025/2026

24

Query id

Resources

- Text book 1: Intro to IR, Chapter 6.2 → 6.4
- Text book 2: IR in Practice, Chapter 7

• Lab 3

Walid Magdy, TTDS 2025/2026