

Text Technologies for Data Science INFR11145

IR Evaluation

Instructor: Walid Magdy

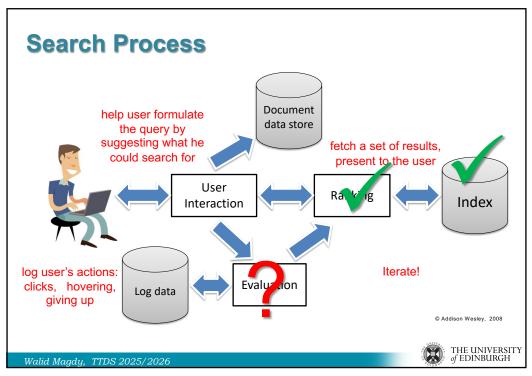
15-Oct-2025

1

Lecture Objectives

- Learn about how to evaluate IR
 - Evaluation measures
 - P, R, F
 - MAP
 - nDCG
- Implement: (as part of CW2)
 - P, R
 - MAP
 - nDCG

Walid Magdy, TTDS 2025/2026



IR as an Experimental Science!

- Formulate a research question: the hypothesis
- Design an experiment to answer the question
- Perform the experiment
 - Compare with a baseline "control"
- Does the experiment answer the question?
 - Are the results significant? Or is it just luck?
- Report the results!
- Iterate ...
- e.g. stemming improves results? (university → univers)

Walid Magdy, TTDS 2025/2026

Л

Lab 3 output	Is that a good p	performance?
1, 65, 4.8040	2, 3549, 7.0396	3, 3354, 4.6113
1, 3533, 4.7264	2, 305, 6.8394	3, 3345, 4.5087
1, 3562, 3.5454	2, 288, 6.6742	3, 268, 3.6606
1, 3608, 3.4910	2, 223, 6.1252	3, 328, 3.4825
1, 141, 3.3262	2, 219, 4.8626	3, 21, 3.3984
1, 361, 3.3262	2, 3762, 4.8626	3, 304, 3.3722
1, 92, 3.2311	2, 3663, 4.5415	3, 313, 3.3436
1, 3829, 3.1818	2, 3766, 3.9924	3, 3790, 3.1796
1, 3420, 3.1273	2, 188, 3.8844	3, 55, 3.0462
1, 3734, 3.0561	2, 3360, 3.0988	3, 217, 2.8492
1, 3387, 2.9626	2, 3408, 3.0315	3, 361, 2.8348
1, 3599, 2.9626	2, 3390, 2.8498	3, 3789, 2.7158
Walid Magdy, TTDS 2025/2026		THE UNIVERSITY of EDINBURGH

Configure your system

- About the system:
 - Stopping? Tokenise? Stemming? n-gram char?
 - Use synonyms improve retrieval performance?
- Corresponding experiment?
 - Run your search for a set of queries with each setup and find which one will achieve the best performance
- About the user:
 - Is letting users weight search terms a good idea?
- Corresponding experiment?
 - Build two different interfaces, one with term weighting functionality, and one without; run a user study

Walid Magdy, TTDS 2025/2026

Types of Evaluation Strategies

- System-centered studies:
 - Given documents, queries, and relevance judgments
 - Try several variations of the system
 - · Measure which system returns the "best" hit list
 - Laboratory experiment
- User-centered studies
 - · Given several users, and at least two retrieval systems
 - · Have each user try the same task on both systems
 - Measure which system works the "best"

Walid Magdy, TTDS 2025/2026

7

Importance of Evaluation

- The ability to measure differences underlies experimental science
 - How well do our systems work?
 - Is A better than B?
 - Is it really?
 - Under what conditions?
- Evaluation drives what to research
 - Identify techniques that work and don't work

Walid Magdy, TTDS 2025/2026

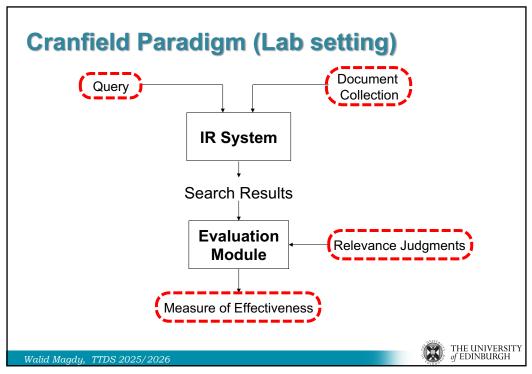
The 3-dimensions of Evaluation

- Effectiveness
 - How "good" are the documents that are returned?
 - System only, human + system
- Efficiency
 - Retrieval time, indexing time, index size
- Usability
 - Learnability, flexibility
 - Novice vs. expert users

THE UNIT OF EDINBU

Walid Magdy, TTDS 2025/2026

9



Reusable IR Test Collection

- Collection of Documents
 - Should be "representative" to a given IR task
 - Things to consider: size, sources, genre, topics, ...
- Sample of information need
 - Should be "randomized" and "representative"
 - Usually formalized <u>topic</u> statements (query + description)
- Known relevance judgments
 - · Assessed by humans, for each topic-document pair
 - Binary/Graded
- Evaluation measure

Walid Magdy, TTDS 2025/2026

11

Good Effectiveness Measures

- Should capture some aspect of what the user wants
 - IR → Do the results satisfy user's information need?
- Should be easily replicated by other researchers
- Should be easily comparable
 - Optimally, expressed as a single number
 - Curves and multiple numbers are still accepted, but single numbers are much easier for comparison
- Should have predictive value for other situations
 - What happens with different queries on a different document collection?

THE UNIVERSITY of EDINBURGH

Walid Magdy, TTDS 2025/2026

Set Based Measures

- Assuming IR system returns sets of retrieved results without ranking
- Suitable with Boolean Search
- No certain number of results per query

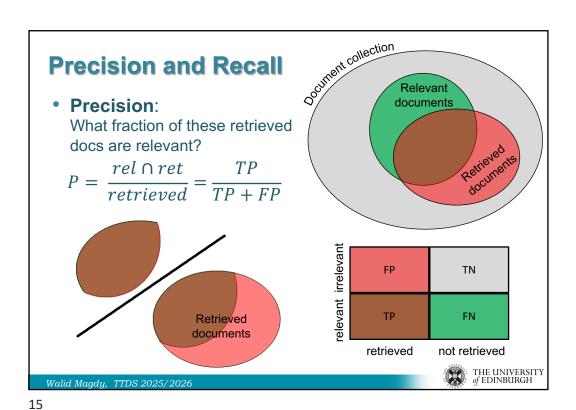
adu, TTDS 2025/2026 THE UNIVER

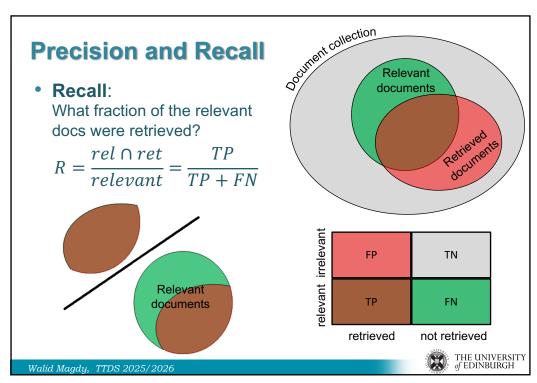
13

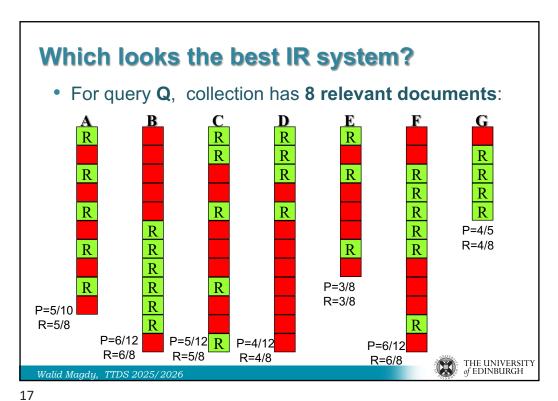
Which looks the best IR system?

For query Q, collection has 8 relevant documents:
A B C D E F G
R R R R R R R
R R R R R R
R R R R R
R R R R
R R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R</l

14



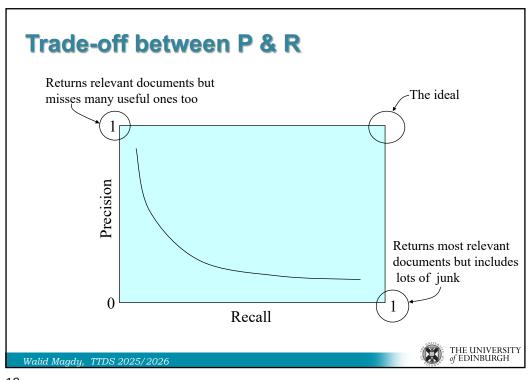


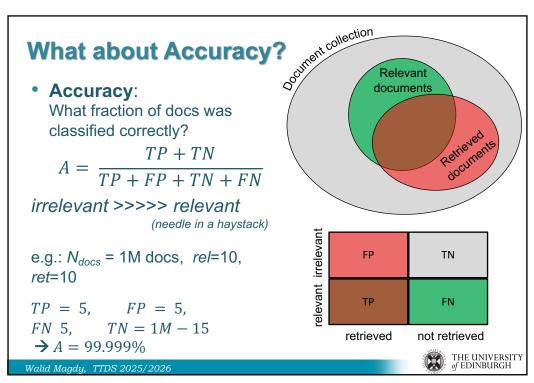


Trade-off between P & R

- Precision: The ability to retrieve top-ranked docs that are mostly relevant.
- Recall: The ability of the search to find all of the relevant items in the corpus.
- Retrieve more docs:
 - Higher chance to find all relevant docs → R ↑↑
 - Higher chance to find more irrelevant docs → P ↓↓

Walid Magdy, TTDS 2025/2026





One Measure? F-measure

$$F1 = \frac{2 \cdot P \cdot R}{P + R}$$

$$F_{\beta} = \frac{(\beta^2 + 1)P \cdot R}{\beta^2 P + R}$$

- Harmonic mean of recall and precision
 - Emphasizes the importance of small values, whereas the arithmetic mean is affected more by outliers that are unusually large
- Beta (β) controls relative importance of P and R
 - β = 1, precision and recall equally important \rightarrow F1
 - β = 5, recall five times more important than precision

Walid Magdy, TTDS 2025/2026

21

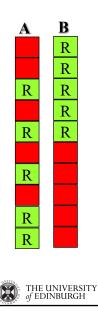
F-measure?

• For query Q, collection has 8 relevant documents:

	System	Precision	Recall	F1 I	F5	F0.5	F0
	Α	0.500	0.625	0.556	0.619	0.521	0.500
	В	0.500	0.750	0.600	0.736	0.536	0.500
	С	0.417	0.625	0.500	0.613	0.446	0.417
	D	0.333	0.500	0.400	0.491	0.357	0.333
	E	0.375	0.375	0.375	0.375	0.375	0.375
	F	0.500	0.750	0.600	0.736	0.536	0.500
=	G	0.800	0.500	0.615	0.507	0.714	0.800
R=5/8 P=6/12 R=6/8 P=5/12 R=5/8 P=4/12 P=6/12 R=6/8 R=6/8 THE							
Walid Magdy, TTDS 2025/2026 R=6/8 THE UNIVERS of EDINBURGH							

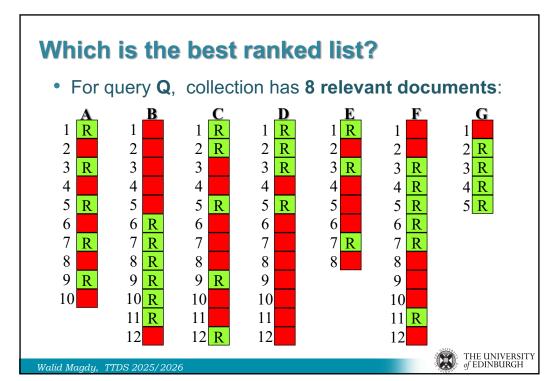
Rank-based IR measures

- Consider systems A & B
 - Both retrieved 10 docs, only 5 are relevant
 - P, R & F are the same for both systems
 Should their performances considered equal?
- Ranked IR requires taking "<u>ranks</u>" into consideration!
- How to do that?



Walid Magdy, TTDS 2025/2026

23



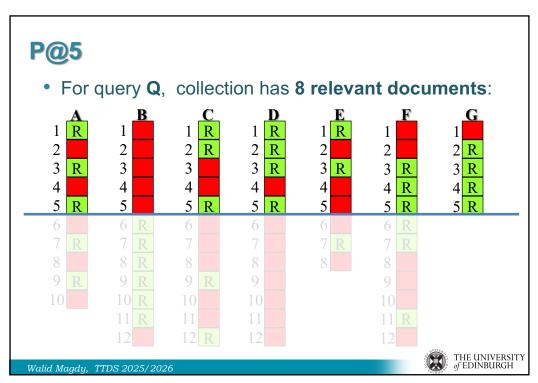
Precision @ K

- *k* (a fixed number of documents)
- Have a cut-off on the ranked list at rank *k*, then calculate precision!
- Perhaps appropriate for most of web search: most people only check the top k results
- But: averages badly, Why?

THE UNIVERSIT

Walid Magdy, TTDS 2025/2026

25

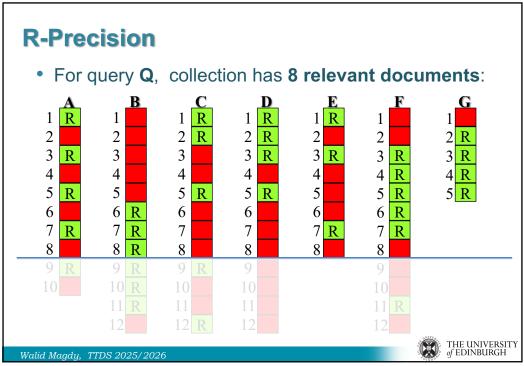


R-Precision

- For a query with known r relevant documents
 → R-precision is the precision at rank r (P@r)
- *r* is different from one query to another
- Concept:
 It examines the ideal case: getting all relevant documents in the top ranks
- Is it realistic?

Walid Magdy, TTDS 2025/2026

27



User Satisfaction??

- It is assumed that users needs to find relevant docs at the highest possible ranks
 - → Precision is a good measure
- But, user would cut-off (stop inspecting results) at some point, say rank x
 →P@x
- What is the optimal x?When you think a user can stop?

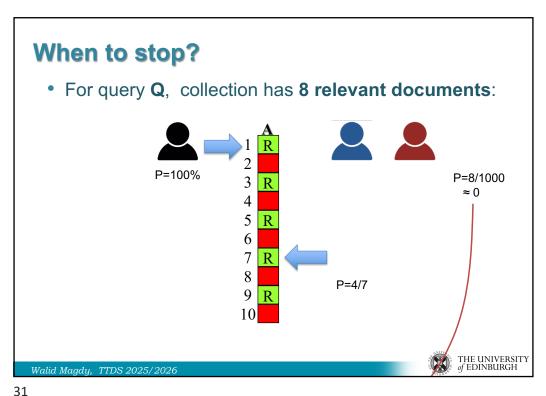
Walid Magdy, TTDS 2025/2026

29

When can a user stop?

- IR objective: "satisfy user information need"
- Assumption: a user will stop once their information need is satisfied
- How? user will keep looking for relevant docs in the ranked list, read them, then stop once they feels satisfied
- P@x →x can be any rank where a relevant document appeared (assume uniform distribution)

Walid Magdy, TTDS 2025/2026

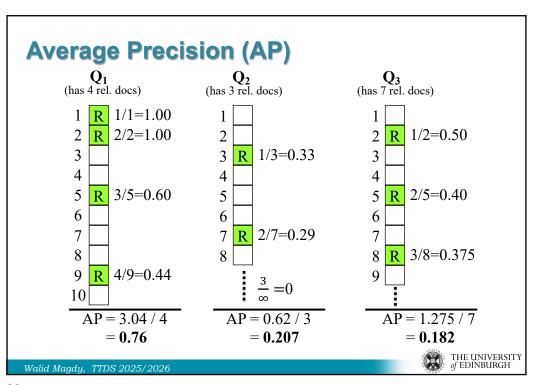


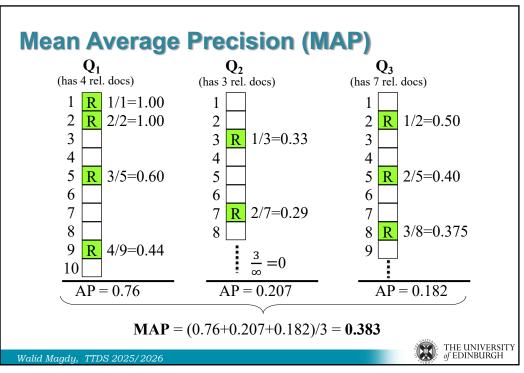
Э1

When a user can stop?

- IR objective: "satisfy user information need"
- Assumption: a user will stop once his/her information need is satisfied
- How? user will keep looking for relevant docs in the ranked list, read them, then stop once he/she feels satisfied
- P@x →x can be any rank where a relevant document appeared (assume uniform distribution)
- What about calculating the averages over all x's?
 - every time you find relevant doc, calculate P@x, then take the average at the end

Walid Magdy, TTDS 2025/2026





AP & MAP

$$AP = \frac{1}{r} \sum_{k=1}^{n} P(k) \times rel(k)$$

where, r: number of relevant docs for a given query n: number of documents retrieved P(k) precision @ k

rel(k): 1 if retrieved doc @ k is relevant, 0 otherwise.

$$MAP = \frac{1}{Q} \sum_{q=1}^{Q} AP(q)$$

where, Q: number of queries in the test collection

THE UNIVERSITY of EDINBURGH

Walid Magdy, TTDS 2025/2026

35

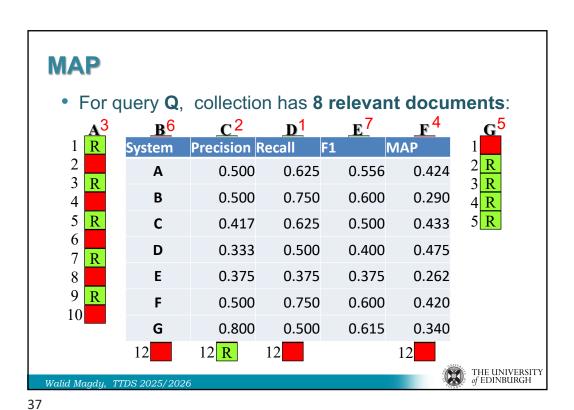
AP/MAP

$$AP = \frac{1}{r} \sum_{k=1}^{n} P(k) \times rel(k)$$

- A mix between precision and recall
- Highly focus on finding relevant document as early as possible
- When $r=1 \rightarrow MAP = MRR$ (mean reciprocal rank $\frac{1}{k}$)
- MAP is the most commonly used evaluation metric for most IR search tasks
- Uses binary relevance: rel = 0/1

THE UNIVERSITY of EDINBURGH

Walid Magdy, TTDS 2025/2026



Binary vs. Graded Relevance

- Some docs are more relevant to a query than other relevant ones!
 - We need non-binary relevance
- Binary Relevance:
 - Relevant 1
 - Irrelevant 0
- Graded Relevance:
 - Perfect 4
 - Excellent 3
 - Good 2
 - Fair 1
 - Bad **0**

Walid Magdy, TTDS 2025/2026

Binary vs. Graded Relevance

- Two assumptions:
 - Highly relevant documents are more useful than marginally relevant
 - The lower the ranked position of a relevant document, the less useful it is for the user, since it is less likely to be examined
- Discounted Cumulative Gain (DCG)
 - Uses graded relevance as a measure of the usefulness
 - The most popular for evaluating web search

THE UNIVERSIT

Walid Magdy, TTDS 2025/2026

39

Discounted Cumulative Gain (DCG)

- Gain is accumulated starting at the top of the ranking and may be reduced (<u>discounted</u>) at lower ranks
- Users care more about high-ranked documents, so we discount results by 1/log₂(rank)
 - the discount at rank 4 is 1/2, and at rank 8 is 1/3
- DCG_k is the total gain accumulated at a particular rank
 k (sum of DG up to rank k):

$$DCG_k = rel_1 + \sum_{i=2}^k \frac{rel_i}{\log_2(i)} (g_{raded})^{rel}$$

Walid Magdy, TTDS 2025/2026

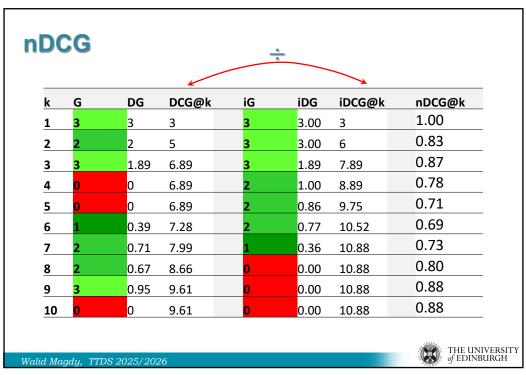
DCG DG DCG@k G 3 3 2 5 1.89 6.89 3 4 6.89 0 6.89 0.39 7.28 6 7 0.71 7.99 0.67 8 8.66 0.95 9.61 10 0 9.61

41

Normalized DCG (nDCG)

- DCG numbers are averaged across a set of queries at specific rank values (DCG@k)
 - e.g., DCG at rank 5 is 6.89 and at rank 10 is 9.61
 - Can be any positive real number!
- DCG values are often normalized by comparing the DCG at each rank with the DCG value for the perfect ranking
 - makes averaging easier for queries with different numbers of relevant documents
- nDCG@k = DCG@k / iDCG@k (divide actual by ideal)
- nDCG ≤ 1 at any rank position
- To compare DCGs, normalize values so that a ideal ranking would have a normalized DCG of 1.0

Walid Magdy, TTDS 2025/2026



Summary:

- IR test collection:
 - Document collection
 - Query set
 - Relevant judgements
 - IR measures
- IR measures:
 - R, P, F → not commonly used
 - P@k, R-precision → used sometimes
 - MAP → the most used IR measure
 - nDGC → the most used measure for web search

Walid Magdy, TTDS 2025/2026

Resources

- Text book 1: Intro to IR, Chapter 8
- Text book 2: IR in Practice, Chapter 8

Walid Magdy, TTDS 2025/2026