Tutorial 1/ ILP

Here we are going to walk through the very basics of setting up a REST service using Spring Boot
within IntelliJ. We will then be packaging it into a Docker image and running the container. Once that is
done, we will send HTTP requests to the server using CURL and Postman. If you have never used
either Spring Boot or Docker before, this walk-through should give you an idea of the workflow! If there
are any questions about this document, please ask on Piazza, we will try to answer as quick as we
can!

IntelliJ is recommended for the course. If you have not installed Intelli) yet use the links below to take
you to the right place, then follow the download instructions from there! As you are a student, you can
also get JetBrains Ultimate for free.

https://www.jetbrains.com/idea/download/?section=mac for Mac
https://www.jetbrains.com/idea/download/?section=windows for Windows
https://www.jetbrains.com/idea/download/?section=linux for Linux
https://www.jetbrains.com/community/education/#students JetBrains Ultimate

Once downloaded and through the introductions, we can start building our simple Representational
State Transfer (REST) service. The framework we are going to use is Spring Boot
(https://spring.io/projects/spring-boot). We can directly set up our project within Intelli) with JetBrains
Ultimate. However, other websites like Spring Initializr (https://start.spring.io/) also work! Figure 1 and
2 show the steps for Intelli). Whereas Figure 3 shows how to do it with Spring Initializr in case you do
not want to get JetBrains Ultimate. Either way, its a simple setup!

https://start.spring.io/

Server URL:

Java Name: simpledemo

Kotlin

~ Location: ~[code
Groovy

P Project will be created in: ~/code/simpledemo
C2 Empty Project

v Create Git repository

Language: Java Kotlin Groovy
Maven Archetype ©

A Jakarta EE
« Spring Boot
B JavaFx Group: ilp.tutorials

Type: Gradle - Groovy Gradle - Kotlin | = Maven

*#] Quarkus
Artifact: simpledemo
- Micronaut
+ Ktor Package name: ilp.tutorials.simpledemo
% Compose for Desktop

B HTML JOK: [openjdk-22 java version "22,0.2"
Java: 21

Angular CLI Packaging: Jar War
V Vuejs

¥ vite

Cancel

Spring Boot Initialisation: When opening a new project on IntelliJ, we can use Spring Boot to setup a
lot of the boilerplate code within the our basic project. Step 1: Select Spring Boot. Step 2: Choose
Maven as our build and dependency manager. Step 3: Select JDK (Download one if you do not have
one installed, you can also point Intelli) to a JDK you already have installed). Step 4: Select Java
version. Note: If you do not have JetBrains Ultimate, Figure 3 shows you how to use Spring Initializr.

Spring Web

Build web, including RESTful, applications using Spring MVC. Uses Apache Tomeat as the default embedded container.

J
Spring Reactive Web
Spring for GraphQL
Rest itori
spri
Rest Repositories HAL Explorer
Spring HATEOAS
Spring Web Services
Jersey
Vaadin
Netflix DGS
htmx
Template Engines Added dependencies:
Security Spring Web
saL
NosQL
Messaging
110
ops
Observability
Testing
Spring Cloud
Spring Cloud Config
Spring Gloud Discovery
Spring Cloud Routi

2

(5 2\
Cancel Previous | Create)

Spring Web Dependency: We need to add Spring Web to our dependencies to create RESTful APlIs.
Step 1: Tick Spring Web. Step 2: Press create, this will initialise the project and generate the
boilerplate code and other files.

[] @ Spring Initializr
€ G % startspring.io z -

IP Go PT GCE >) Github W Learn (@ ChatGPT Overleaf + Speechify [PythonDocs [PythonLibrary Do.. [MLEngineeringD.. [MLFrameworkD.. [Cloud Docs [Java Docs

@ spring initializr

Project Language Dependencies ADD DEPENDENCIES... % +8 |

QO Gradle - Groovy [)] Q Kotin O Groovy

O Gradle-Kotin @ spring Web [0
Build web, including RESTful, applications using Spring MVC. Uses Apache Tomcat

Spring Boot as the default embedded container.

O 340 (SNAPSHOT) O 340(M2) QO 3.34(SNAPSHOT) @

Q 3210 (SNAPSHOT) O 329

Project Metadata

Group ilp.tutorials

Artifact simpledemo

Name simpledemo

Description Demo project for Spring Boot

Package name ilp.tutorials.simpledemo

Packaging @ O war

Java Q22 @ Q17

l GENERATE 3 + <« ‘l EXPLORE CTRL + SPACE |[SHARE... |

Spring Initializr Setup: If you do not want to use JetBrains Ultimate then you need to use Spring
Initializr. Use the configuration on shown above then open up the unzipped file in IntelliJ, it should lead
to the same spot! Skip this if you have already done the steps in IntelliJ!

B simpiedemo & SimpledemoApplication JH & Qs

Project 8 : 3
Notificat
~ [simpledemo ~/code/simpledemo package ilp.tutorials.simpledemo; v

> D)

> &.mvn import org.springframework.boot. SpringApplication; A
~ Dasre import org.springframework.boot.autoconfigure.SpringBootApplication;

~ [main 8

¥ Djava 0B

:) @SpringBoctApplication
Structure ~ Byilp.tutorials.simpledemo €y L

public class SimpledemoApplication { m

> [Rresources
> Ditest static void main(String[] args) { SpringApplication.run(SimpledemoApplication.class, args);

> (b External Libraries
> = Scratches and Consoles

Terminal Local + -

(base) cameronwheeler@Camerons-MacBook-Pro simpledemo %

it

simpledemo > src > main > java > ilp > tutorials > 3 0 14:1 LF UTF-8 4spaces cf

Starting Spring Boot Application: The main method and directory structure are auto-generated by
Intelli. This saves us a bit of time and effort having to add all of this ourselves and makes it easily
reproducible!

B simpledemo

Project

v [3simpledemo ~/code/simpledemo

.simpledemo

trollers

al Libraries
hes and Consoles

% SimpledemoApplication

jge ilp.tutorials.simpledemo.controllers;

{

Creating The Controller Directory: We have our basics set up, now we can start building our simple
REST service. Spring has included the main method that will start our application, but we need to
control how our application responds to HTTP requests. To do this, we use a \Controller. Each method
within the Controller will be implementing an endpoint within our application. To do this we create a
controller directory within our application and create a .java file where we can start to program our

controller.

[] 8 simpledemo -

(] Project
Project ~
~ [simpledemo ~/code/simpledemo

-0

Commit

o

simpledemo

rollers

% SimpledemoApplication

ackage ilp.tutorials.simpledemo.controllers;

bind.annotat:

bind.annotat:

This is replaced by the actuator/health endpoint in Spring (https://docs.spring.io/spring-
boot/api/rest/actuator/health.html)

Explain and elaborate as mandatory for the final service

https://docs.spring.io/spring-boot/api/rest/actuator/health.html
https://docs.spring.io/spring-boot/api/rest/actuator/health.html

© oo [§ smpledemo

o] Project

Project

v [simpledemo ~/code/simpledemo

.mvn
Osrc
3 main
java
v B3 ilp.tutorials.simpledemo
v (2 controllers

v [resources
3 static
[templates

Dtest

@

> (ih External Libraries
> Z°Scratches and Consoles

& SimpledemoApplication v

ilp.tutorials.simpledeno.controllers;

rg.springframework.web.bind.annotat:
rg.springframework.web.bind.annotat:

rg.springframework.web.bind.annotation.

BasicController {

(@ "/isAlive")
isAlive() {

ing (@ "/studentId/{nal
tring studentId(@Pa e String name) {
if (name.equalsIgnoreCase(anotherString: "Cameron")) {

"$2562095";

not in our register, sorry!";

studentld Endpoint: Another way to configure endpoints is shown in the studentl/d endpoint. This
endpoint again uses a @GetMapping annotation and simply returns my student ID if you pass in my

name.

This should be utilizing a variable from the application.yml or app.config (either way is fine)
which is set via a classical configuration from the Spring framework (in our case an environment
variable). We will use this later on the have replacement values for the URL consumption.

If not, we return another message. We use the @PathVariable annotation to extract the URl variable
that replaces name. For example, /studentld/Bob will extract Bob from the URI and bind it to the
method variable name. Note: This method does not look to check erroneous parameters in the
request such as a space " ", "1234556", or "&&$$". However, in your coursework, always check for
erroneous data! You will get some!

Run & SimpledemoApplication

Console Actuator

NI e
GlECINTEREE =

| YA IRV GV
=) =]

Ficr yy)))
N R Sl B A 2 £
=|__/=/_1_1./

S VR
11

[}
(N

: Spring Boot :: (v3.3.3)

2024-09-16T14

2024-09-16T14

simpledemo > src > main > java > ilp > tutorials > simpledemo

47.627+01:00 INFO 8916 ---
2024-09-16T14:27:47.629+01:00 INFO 8916 ---
INFO 8916 ---
INFO 8916 ---
INFO 8916 ---
INFO 8916 ---
INFO 8916 ---
INFO 8916 ---
INFO 8916 ---

[simpledemo]
[simpledemo]
[simpledemo]
[simpledemo]
[simpledemo]
[simpledemo]
[simpledemo]
[simpledemo]
[simpledemo]

controllers

main] i.t.simpledemo.SimpledemoApplication

main] i.t.simpled: 0Application
main] o.s.b.w.embedded TomcatWebServer.
main] o.apa

main] o.apa

BasicController

: Starting SimpledemoApplication using Java 22.8.2 v
: No active profile set, falling back to 1 default |
:(Tomcat initialized with port 8680 (http)

: Starting service [Tomcat]

: Starting Servlet engine: [Apache Tomcat/10.1.28]

Initializing Spring embedded WebApplicationContext

: Root WebApplicationContext: initialization complet
: Tomcat started on port 808 (http) with context p:
: (Started SimpledemoApplication in 8.776 seconds)(pt

25:1 LF UTF-8 4 spaces

Server Starting: Now that we have our controller with two endpoints, we have the basic workings of a
simple REST service. To ensure everything works before placing it into Docker, we can run the
application and send HTTP requests to the endpoints. This figure shows what the Spring application
starting should look like! If you get any issues that you cannot easily debug yourself, its often worth

just starting from a clean sheet! Our application is listening to localhost port 8080. Now that our
server is running, we can use curl or Postman to sent requests to each of the endpoints.

Terminal Local

(base) cameronwheeler@Camerons-MacBook-Pro simpledemo % curl --request BET htt

ruel
truel

(cameronwheeler@Camerons-MacBook-Pro simpledemo % curl --request BET htt
525620950

(base) cameronwheeler@Camerons-MacBook-Pro simpledemo % curl --request BET htt
You're name is not in our register, s

(base) cameronwheeler@Camerons-HacBook-Pro simpledeno % ||

Curl Requests to Both Endpoints: Curlis a CLI tool that we can use to send requests to our service.
The figure shows my terminal using curl to send GET requests to both endpoints. We can see our
service is up and running and will correctly give my student ID back to me as a string when | send a
GET request with my name in the URI path. It also correctly returns the message if we do not passin
my name. Curl works great with simple requests like this, but as things get more complex it can be a
pain. | prefer to use Postman as it makes life a little easier.

® € Home Workspaces ¥ AP| Network ~ 3 O © Upgrade

2 My Workspace New Import GET isAlive

U ! = . HIIE isAlive
ACP Python
> ACP-Coursew http://localhost:8080/isAlive
> ACP-Cours 2
> APl Documentation #reference
v ILP REST Service
GET isAlive

GET universityld

Body Cookies Hea

Pretty 2\ Visualize JSON v

1

Postman Request to isAlive: This is a screenshot of a GET request being sent to isAlive using
Postman.

& Docker Desktop Edit View B & & ® @ @ 3 @ oxwm = Q 8 Mon16Sep 14:40

® @ ® @ Jocker desktoy Q Search for images, containers, volumes, extensions a g 0 & @ (e

> Containers Images
5 Images
) Volumes Local Hub
Builds
[Docker Scout

> Extensions

Images are used to run containers

Search images to run

How do | run a container? Run Docker Hub images

docker
” e

& Engine running [> MicA) >_ Terminal v va342 CED

Getting Docker Running: Okay, we know our REST service works and that we can hit the endpoints,
let's dockerize it. Stop the application from running before moving on. In order to use docker, we need
download the Docker daemon, we can install the desktop app from
https://www.docker.com/products/docker-desktop/ . This allows us to use either the CLI or the
application itself to control Docker. Once downloaded, make sure the daemon is running before
continuing. On my Mac (it should be similar for both Windows and Linux) there is the docker logo in
the menu bar that indicates the daemon is running.

B simpledemo & SimpledemoApplication ~ [> ¥

Project

New) Java Class
[3 Module.
Kotlin Class/File

= File

= Scratch File T%N

[Directory nane}")

Find Usages hVariable String name) {

W JavaScript Fle se(anotherString: “Cameron®)) {
Replace in Files... I TESED

> thExterr Analyze itz

> =" Scrat & Stylesheet

Refactor package json

~ C3simph [~
>

> [.m & Cut
@ Copy
Copy Path/Reference...
@ E) Paste

Find in Files...

3
Y is not in our register, sorry!";

1
Right Click

Terminal

& (base) car
Run

T

Build

®

services

Bl

Terminal

©

Problems

14

Git

simpledemo

Bookmarks (& Dockerfile

*= Reformat Code

Optimize Imports.
Remove Module

Build Module ‘simpledemo’

Rebuild Module 'simpledemo’

Run "All Tests'
Debug 'All Tests'
More Run/Debug

Open In

Local History
Git
Repair IDE on File

> Reload from Disk

- Compare With...

Open Module Settings
Mark Directory as

2 Analyze Dependengies...

Diagrams

Maven

Dev Container Config...

HTTP Request

7 OpenAPI Specification

Kubemetes Resource
Helm Chart

& OpenRewrite Recipe

13 Resource Bundle

@ EditorConfig File

XML Configuration File >

& Data Source in Path

242 LF UTF-8 4spaces

Adding Dockerfile to Project: The Dockerfile is what instructs Docker when building the image. Each
command in the Dockerfile specifies what Docker needs to do to form the complete image, layer by

https://www.docker.com/products/docker-desktop/

layer. In IntelliJ, we can add a Dockerfile to the repo by Step 1: Right-clicking the repo name. Step 2:
Going to new. Step 3: Selecting Dockerfile (you can also just select file and type Dockerfile, make sure
the D is capitalized and the f is lowercase). This will add a blank Dockerfile to our project.

B8 simpledemo ~ & SimpledemoApplication v

Project ~ v A - Maven
v [3 simpledemo ~/code/simpledemo oE L+

> [Profiles

~ M simpledemo
3 Lifecycle »

@ clean)

1 validate

3 install
simpledemo-0.0.1-SNAPSHOT jar @ site
" €3 deploy
> [3Plugins
> [a Dependencies
> [Repositories

The jar we wa

> (fh External Libraries
» = Scratches and Consoles

Run simpledemo [package]
G @ @,

simpledemo [package]: 3 sec, 726 ms [INFO]
[INFO] --- spring-boot:3.3.3:repackage (repackage) @ simpledemo ---
[INFO] Replacing main artifact /Users/cameronwheeler/code/simpledemo/target/simpledemo-8.08.1-SNAPSHOT.jar 1
[INFO] The original artifact has been renamed to /Users/cameronwheeler/code/simpledemo/target/simpledena-0
[INFO]
[INFO] BUILD SUCCESS

souBwIOpag

[INFO] Total time: 2.948 s
[INFO] Finished at: 2024-89-16T14:48:22+081:60

Process finished with exit code 0

> target » 0.0.1-SNAPSHOT jar

Maven Clean and Package to Create A JAR File: One of the key steps in creating a Docker image is
transferring code from our source repository into the image itself. Since we are using Maven as our
build manager, we can easily create the .jar file that we are going to use. Step 1: Select Maven on the

right-hand side menu. Step 2: Clean the project. Step 3: Package the project (this will create the .jar
file within the target directory). We will now use this .jar file when creating our Docker image in the
next figure!

8 simpledemo - & SimpledemoApplication -

Project

v [simpledemo ~/code/simpledemo
> B 1 FROM --platform=linux/amdé4 openjdk:21
> BO.mvn

> Bsre
@
Structure
=)
> (b External Libraries 4 COPY ./target/simpledemo-0.0.1-SNAPSHOT.jar app.jar

> = Scratches and Consoles

5 ENTRYPOINT ["java", “-jar", “app.jar"]

Terminal Local S AN

(base) cameronwheeler@Camerons-HacBook-Pro simpledeno % ||

simpledemo Dockerfile 14:39 LF UTF-8 4spaces of

Dockerfile Contents: The figure above shows how we need to set up our Dockerfile. Step 1: Use the
FROM command to instruct docker what base image to pull. If you are using a Mac be sure to include
the --platform=linux/amd64 tag otherwise it will not work when being run on a different architecture!
Step 2: Docker containers have their own ports; we need our service running inside the container to
communicate outside the container. Our service is listening to port 8080, so we instruct docker to
EXPOSE port 8080. When getting running the container, we will have to map our exposed 8080 port to
a port on our host machine (we do this in Fig 16). Step 3: Set the working directory with WORKDIR
command. Step 4: We copy our .jar file we built using Maven over into our Docker image and rename it
to simply app.jar. Step 5: We set the ENTRYPOINT command, this tells Docker what process to run
when the container is started, in our case, boot up our REST service!

Terminal Local = v B

(base) cameronwheeler@Camerons-MacBook-Pro simpledemo % docker build . -t ilp_demo_image
[+] Building 10.2s (9/9) FINISHED docker: desktop-1inux
> [inter ild definition fre 0.0s

flag should not use constant value "linux/amdé4" (line 2)

Git

simpledemo » Dockerfile 13:57 LF UTF-8 4spaces ¢

Building The Docker Image: Now that we have given Docker the instructions on how to build our
image, lets build it. This can be done from the command line really easily. Making sure Docker is
running and we are within the correct repo, we simply use docker build <directory of Dockerfile> -t
<preferred name of our image> in our case, we are building the Dockerfile in the current directory, and
naming our image ilp_demo_image. The output should look similar to what is displayed in the image.

-o- Terminal Local
Commit
(base) cameronwheeler@Camerons-MacBook-Pro simpledemo % docker run -p 8080:8088 ilp_demo_image

° WARNING: The requested image's platform (linux/amdé4) does not match the detected host platform (linux/armé4/v8) and no specific platform was requested
So
Structure

S)Ess e s SN
DAY 2 [HAVAVR AN
L (8 B0 152 2 1)

o DS\ b/
==|___/=1_1_1_1

:: Spring Boot :: (v3.3.3)

2024-89-16T13:59:45.735Z INFO 1 --- [simpledemo] [main] i.t.simpledemo.Simplede tion : Starting SimpledemoApplication v@.0.1-SNAPSHOT using Java
21 with PID 1 (/app/app.jar started by root in /app)

2024-09-16T13:59:45.739Z INFO 1 --- [simpledemo] main] i.t.simpledemo.S tion : No active profile set, falling back to 1 default profile:
“default"

2024-09-16T13:59:47.632Z INFO 1 --- [simpledemo] main] o.s.b.w.embedded.tomca r : Tomcat initialized with port 80886 (http

2024-89-16T13:59: INFO 1 --- [simpledemo] main] o.apache.catalina.core. : Starting service [Tomcat]

2024-09-16T13:59:47. INFO 1 --- [simpledemo] main] o.apache.catalina.core.Stz g : Starting Servlet engine: [Apache Tomcat/16.1.28
2024-09-16T13:59:47. INFO 1 --- [simpledemo] main] o0.a.c.c.C.[Tomcat].[localhost]. : Initializing Spring embedded WebApplicationContext
2024-09-16T713:59:47.706Z INFO 1 --- [simpledemo] main] w.s.c.Serv xt : Root WebApplicationContext: initialization completed in 1
862 ms

2024-09-16T13:59:48.473Z INFO 1 --- [simpledemo] main] o.s.b.w.embedded.tomcat r : Tomcat started on port 8080 (http) with context path '/'
2024-69-16T13:59:48.499Z INFO 1 --- [simpledemo] main] i.t.simpledemo.s: : Started SimpledemoApplication in 3.565 seconds (process r
unning for 4.962)

simpledemo Dockerfile 13:57 LF UTF-8 4spaces o

Running Docker Container: Now that we have build our image. We can spin up a container (a running
image) and send requests to our service! To do this, we use the docker run command. Specifically, we
use docker run -p <map host port to container port> <the image we want to run>. In Fig 14 we
exposed port 8080, so we simply map our host 8080 port to the exposed 8080 port on the container.

We again get the same SPRING which shows us that our container is running and our REST service is
listening for HTTP requests.

® ® ® @ Jdocker desktop Y Q Search for images, containers, volumes, extensions a. 8 @ & =

@ Containers < Containers
5 Images

) Volumes
Container CPU usage Container memory usage Show charts
/5 Builds

) Docker Scout

& Extensions
Status Port(s) CPU (%) Laststarted Actions

Runnin 0.63% 42 seconds ago
2a637e07f54d 9 go @

Showing 1 item

Walkthroughs

Multi-container applications Containerize your application

>_ Terminal v va342 (CED)

View of Docker Container Running in Docker: We can also go and check the Docker desktop app to
confirm our container is running. If we wanted to, we can kill the container, inspect the container's
logs or view its stats like CPU and memory usage!

[X € Home Workspaces v AP| Network v L A Invite B 0 O Upgrade

S My Workspace New Import GET isAlive universityld ~ X Noenvironment v

() = iy isAlive v Share
Collections
ACP Python

ACP-Coursework-1 GET v http://localhost:8080/isAlive
ACP-Coursework-2

Params Au saders (6) Body Scripts
API Documentation #reference

Query Params
ILP REST Service

P Ke Value Description
GET isAlive y L

GET universityld

Body Cookies

Pretty

L

nd and replace

Postman Sending Request to Service Inside Docker Container: We can now send HTTP requests to
our service running in the container much like we did our service running without Docker. Again using
tools like curl or Postman. The figure shows an isAlive request using Postman.

