(1)

(2)

Introduction to Theoretical Computer Science

Exercise Sheet: Week 4

Write down the code for an RM macro ‘if Ry > Ry then goto I;’. The
macro must leave all registers unchanged after its execution. Assume a
predefined GOTO macro.

Give a simple recursive definition of a sequence coding function N* — N,
based on the pairing function in the slides.

Our register machines have a finite number of registers, each holding an
unbounded number. Turing machines have an unbounded number of cells,
each holding one of a finite set of symbols.

Suppose we allow register machine to have an unbounded number of
registers, but each register is finite (e.g. 32 bits) — like current computer
memory. With no changes to the instruction set, are these machines still
Turing powerful? Why or why not?

Suppose now that we add a form of indirect addressing. For example,
we might say that the register operand of an instruction can now be either
i, as before, meaning R;, or (i), meaning Rg,. Does that help?

Why aren’t Turing machines affected by this issue? Can you adapt
ideas from TMs to solve this issue for RM?

The proof of the Halting Problem relies on the lethal combination of
self-reference (when the machine is run on itself) and negation (when
we flip the result of the halting analyser). Here are some other famous
contradictions/paradoxes. Discuss what they show or how they might be
resolved.

(a) ‘The barber shaves all and only the men who do not shave them-

selves.’
(b) ‘The set of sets that are not members of themselves.’
(¢) ‘The smallest natural number not definable in under eleven words.’



