
Introduction to Theoretical Computer Science

Exercise Sheet: Week 7

(1) The basic claim was that polynomial problems are ‘easy’, and non-polynomial
problems are hard. Consider f(n) = n1010 , and g(n) = 10n/1010 . Show that
f(n) ∈ o(g(n)). (Recall this means that ∀ε > 0.∃n0.∀n > n0.|f(n)| ≤
ε|g(n)|.) (Hint: take logs, and remember that you only have to care about
large enough n.) Where does g catch up with f?
Bonus: Where does the statement f(n) ∈ o(g(n)) fit in the arithmeti-

cal hierarchy that we discussed unofficially? (Trick question!)
(2) We defined the class P in terms of polynomially bounded machines. Ex-

plain how to implement this definition. That is, given a register machine
M (taking input R in R0 as usual), explain how to construct a machine
M ′ which takes inputs R and k, and behaves like M except that it halts
after (lgR)k steps of M ’s execution.

(3) Show that the Halting problem is not NP-complete. (This is obvious . . .
but can you prove it?)

The following is a reasonably tricky algorithm design problem.

(4) 2-SAT is the following problem: given a set of boolean variables Xi, and
a formula φ =

∧
1≤j≤n(αj ∨ βj), where each αj, βj is a literal, i.e., either

a variable or a negated variable, is there a satisfying assignment for φ?
Show that 2-SAT is polynomial (unlike SAT or 3-SAT). (Quite difficult.

Hint: look for two clauses that contain a variable and its negation (e.g.
(X ∨ Y) and (Z ∨ ¬Y)), merge them into a single clause, and add it to
the formula.)

1

