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Problem 1

Consider again the following linear program (LP) from Tutorial 6.

maximise 6x1 + 6x2 + 5x3 + 9x4

subject to 2x1 + x2 + x3 + 3x4 ≤ 5
x1 + 3x2 + x3 + 2x4 ≤ 3
x1, x2, x3, x4 ≥ 0

In Tutorial 6 you solved this LP using the Simplex Method.

A. Write the dual LP to this LP.

B. Find an optimal solution to the dual LP.

Hint: You may look back at the way you computed the optimal solution to the primal LP using the
Simplex Method, and extract the optimal solution to the dual LP from the final dictionary.

Solution

A. The dual of the given LP is given by the following linear program

minimise 5y1 + 3y2

subject to 2y1 + y2 ≥ 6
y1 + 3y2 ≥ 6
y1 + y2 ≥ 5
3y1 + 2y2 ≥ 9
y1, y2 ≥ 0

B. The objective function of our final dictionary for solving the primal LP was the following:

ζ = 17− w1 − 4w2 − 7x2 − 2x4

We look at the coefficients c1 and c2 of the slack variables w1 and w2 respectively; then the optimal
solution to the dual should be y1 = −c1 = 1 and y2 = −c2 = 4. As a sanity check, we plug those in
back to the dual LP. First, we observe that all of the constraints are satisfied, so (1, 4) is a feasible
solution. Furthermore, the value of this solution for the dual LP is 5 + 3 · 4 = 17. This is the same as
the value of the optimal solution for the primal LP, hence by strong duality, (1, 4) must be an optimal
solution to the dual.
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Problem 2

A cargo plane has three compartments for storing cargo: front, centre, and rear. These comparments have
the following limits on both weight and space: the front can fit up to 10 tons and up to 6800 cubic metres
of cargo, the centre can fit up to 16 tons and 8700 cubic metres of cargo, and the rear can fit up to 8 tons
and 5300 cubic metres of cargo.

Additionally, the weight of the cargo in the respective compartments must be the same proportion of that
compartment’s weight capacity to maintain the balance of the plane. For example, if 8 tons are put in the
centre compartment, 5 tons must be put in the front compartment, since 8/16 = 5/10.

The following four cargoes are available for shippment on the next flight: Any proportion of these cargoes

Cargo Weight (tons) Volume (cubic meters/ton) Profit (GBP/ton)
C1 18 480 310
C2 15 650 380
C3 23 580 350
C4 12 390 28

can be accepted. The objective is to determine how much (if any) of each cargo C1, C2, C3, and C4 should
be accepted and how to distribute each among the compartments of the plane so that the total profit for the
flight is maximised.

Formulate the problem above as a linear program.

Solution

We will use variables for each cargo and each compartment of the plane. In particular, let xij denote the
amount of cargo Ci, for i ∈ {1, 2, 3, 4}, that we allocate to compartment j of the plane, where j ∈ {f, c, r}.
Optionally, to allow us to write the linear program more compactly, we can define the following variables.
Let Wj and Vj denote, respectively, the weight and volume limits for compartment j ∈ {f, c, r}. (E.g., in
this problem, we have Wf = 10 and Vf = 6800.) Let wi denote the amount of weight in tons of cargo Ci

available to bring on the flight (e.g., C1 = 18), let vi be the volume (in m3/ton) for cargo type Ci, and let
pi denote the profit (in GBP/ton) for cargo type pi, for each i ∈ {1, 2, 3, 4}. Then we can express our linear
program as follows.

We first figure out the objective function. The goal is to maximise the profit. The total amount of units
from cargo Ci is

∑
j∈{f,c,r} xij = xif + xic + xir, and we multiply that by the corresponding profit of each

cargo. Therefore, we obtain the following objective function:

Maximise

4∑
i=1

pi
∑

j∈{f,c,r}

xij .

We now write the constraints. First of all, all the variables have to be non-negative, as we cannot allocate
negative amounts of cargo, i.e., xij ≥ 0 for all i ∈ {1, 2, 3, 4} and j ∈ {f, c, r}. Also, we cannot bring more
cargo than we have available, and so

∑
j∈{f,c,r} xij ≤ wi for all i ∈ {1, 2, 3, 4}. Then we write the capacity

constraints. For the weight, we have that the total amount of cargo in each compartment is at most the
specified weight for that compartment; i.e.,

4∑
i=1

xij ≤ Wj for all j ∈ {f, c, r}.

For volume, we have a similar constraint:

4∑
i=1

xijvi ≤ Vj for all j ∈ {f, c, r}.
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Finally, we have to consider the balance constraint. This can be simply written as:

1

10

4∑
i=1

xif =
1

16

4∑
i=1

xic =
1

8

4∑
i=1

xir.

(Note: To express these equality constraints as inequalities, we can simply write each expression A = B as
A ≤ B and A ≥ B.)

Problem 3

Consider a convex polygon P in R2, given by an unordered list of its corner points p1, p2, . . . , pm, with
pj = (aj , bj). Construct a linear program with the following properties:

A. If the origin (0, 0) is in the interior of P , then the program is feasible, and the optimal value of its
objective function is strictly positive.

B. If the origin (0, 0) is not in the interior of P , then the program is either infeasible, or it is feasible and
the optimal value of its objective function is at most 0.

Recall that a point is said to be in the interior of P if it is in P but not on the boundary of P , that is it is
neither a corner nor on an edge of P . You may also use the fact that a point is in the interior of P if and
only if it is a weighted average of the corner points of P , with all weights being strictly positive.

Solution

Given the last fact given in the statement of the exercise, we will express a point as a weighted average of
the corner points in P . In particular for the origin, we will have that

∑m
j=1 wjaj = 0 (for the a coordinate)

and
∑m

j=1 wjbj = 0 (for the b coordinate). Now we would like our linear program to be feasible and have
a strictly positive objective function value if all the weights wj are strictly positive, and to be infeasible
or have zero or negative objective function value otherwise. To express that the weights are positive, we
could attempt to use a new variable δ and write wj > δ. We cannot however have strict inequalities in our
constraints. Instead, we will use wj ≥ δ and add δ to the objective function. Consider the following linear
program:

maximise δ

subject to

m∑
j=1

wjaj = 0

m∑
j=1

wjbj = 0

wj ≥ δ for all j ∈ {1, · · · ,m}

Assume that the LP is feasible and the objective function value is strictly positive. That means that δ > 0
and hence wj > 0 for all j, i.e., the origin is in the interior of the polygon. Assume now that the LP is
feasible but the objective function value is at most 0. This means that wj ≤ 0, and hence the origin is not
in the interior. Similarly, if the LP is infeasible, then it is not possible to find values of wj and δ that satisfy
the constraints, which means that the origin cannot be written as a weighted average of the corner points,
with strictly positive weights.

Problem 4

Let G = (V,E) be an undirected graph with weights on the nodes (wv for each node v ∈ V ). A vertex cover
of G is a set of nodes S ⊆ V such that every edge e ∈ E is incident to some node in S. A minimum weight
vertex cover is a vertex cover with minimum total weight

∑
v∈S wv.
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Formulate the problem of finding a minimum weight vertex cover of G as an integer linear program (ILP).
Explain the role of your variables and your constraints, and why an optimal solution to the ILP corresponds
to a vertex cover of minimum weight. Write the LP-relaxation of your ILP.

Solution

First, we will consider the variables. We will use an indicator variable xu which will be 1 if node u is in the
vertex cover S and 0 otherwise. Our objective function can then be written as

Minimise
∑
u∈V

xuwu

Indeed, notice that if a node is included in the vertex cover then it contributes to its weight (since xu = 1),
otherwise it does not. Now we have to write the constraints. The easiest one is the integrality constraint
xu ∈ {0, 1}, since xu is an indicator variable. Finally, we need to express the constraint that for every edge
e = (u, v) ∈ E, at least one of u and v must be included in S. That we can do via the following constraint;

xu + xv ≥ 1

Indeed, if both xu and xv are 0 (i.e., none of the two endpoints of the edge is in the vertex cover), then the
constraint will be violated. In the end we have the following LP:

minimise
∑
u∈V

xuwu

subject to xu + xv ≥ 1, for all e = (u, v) ∈ E

xu ∈ {0, 1} for all u ∈ V

Problem 5

Consider the following problem. There are n indivisible items of weights w1, . . . , wn to be distributed to m
bags. Our goal is to minimise the weight of the heaviest bag. Formulate this problem as an integer linear
program. Explain the role of your variables and your constraints, and why an optimal solution to the ILP
corresponds to a vertex cover of minimum weight. Write the LP-relaxation of your ILP.

Solution

We start with our choice of variables. We would like to figure out which bag to assign each item to. For
that, we will use indicator variables xij which will be 1 if item i is placed in bag j and 0 otherwise. For our
objective function, we want to minimise the weight of the heaviest bag, which can be written as:

minimise max
j∈{1,...,m}

n∑
i=1

xijwi

Indeed, the weight of bag j is the sum of weights of the items that are assigned to that bag, which are only
the items i for which xij = 1. Then we can add the straightforward constraint that each item must be
assigned to exactly one bag, i.e., ∑

j∈{1,...,m}

xij = 1 for all i ∈ {1, . . . , n},

as well as the integrailty constraint xij ∈ {0, 1} for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

The problem with our formulation is that our objective function is not linear, since it has the max function
as a part of it. We will remove the max function using the usual trick: we will introduce a new variable e
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and we will add the constraint that

n∑
i=1

xijwj ≤ e, for all j ∈ {1, . . . ,m}

The idea is that e is an upper bound on the value of the objective function: if the maximum of the sums
is at most e, then every one of the sums will be at most e. The only thing to be concerned about is
whether our LP in an optimal solution will choose some e′ > maxj∈{1,...,m}

∑n
i=1 xijwi rather than e =

maxj∈{1,...,m}
∑n

i=1 xijwi. However this is not going to happen, because choosing e = maxj∈{1,...,m}
∑n

i=1 xijwi

is feasible, and results in a smaller objective function value than choosing e′. Our final LP is the following:

minimise e

subject to

n∑
i=1

xijwj ≤ e, for all j ∈ {1, . . . ,m}

m∑
j=1

xij = 1, for all i ∈ {1, . . . , n}

xij ∈ {0, 1} for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}

Problem 6

A tutor in Algorithms and Data Structures has decided that the tutoring salary is not enough, and has
decided to offer private lessons to the students. These will be 1-to-1 lessons, with a duration of 1 hour. The
tutor has divided the week into 1-hour slots which are offered to the students. Every student i specifies the
following parameters:

- The availability for slot j: this is a parameter aij which is 1 if the student is availble to take that slot,
and 0 otherwise.

- The amount the student is willing to pay for slot j, denoted by pij .

- The number of lessons qi that the student wishes to take. The student is willing to either take qi
lessons or none, more or fewer lessons that qi are not acceptable.

The tutor would like to assign students to slots in a way that maximises their profit. Help the tutor by
figure out the optimal assignment by formulating the above problem as an integer linear program. Describe
the objective function, the variables, and the constraints.

Solution

We start by identifying appropriate indicator variables: let xij be 1 if student i is assigned to slot j and 0
otherwise. The profit from this assignment is then xijpijaij , as the student will pay pij for slot j only if the
student is available to take the slot (i.e., aij = 1), and if the student is assigned to the slot (i.e., xij = 1).
Therefore our objective function is:

Maximise
∑
j

∑
i

xijpij

For our constraints, we have that only one student can be assigned to each slot (since these are 1-to-1
lessons), so we have: ∑

i

xij ≤ 1, for all j

We also have the obvious integrality constraints xij ∈ {0, 1} for all i and j, as well as the constraint that a
student can only be assigned to a slot for which they have availability. We can write this as:

xij ≤ aij for all i, j.
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What we are missing are the constraints regarding the number of lessons for each student. We would like a
constraint that say that student i can take either qi lessons or none. Another way to view this is that, if the
student is selected for tutoring, then they get qi lessons, otherwise they are not selected for tutoring. Hence,
we can introduce a new indicator variable which is

yi =

{
1, if the student is selected to take lessons,

0, otherwise.

Then, we can express the final set of constraints as follows:∑
j

xijαij = qiyi

Indeed, if the student is selected, then will need to take qi lessons (since in that case yi = 1), otherwise they
will take 0 lessons (as in that cases yi = 0). If we add the integrality constraint yi ∈ {0, 1} for all i, we have
our ILP).
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