Algorithms and Data Structures

Degeneracy, Geometry, and Duality
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Degeneracy not
necessarily and issue

. entering variable

Maximise (= 5 + |

subjectto x, = 5 +2 x3 -3 Xx

Xy =TT -4 X The LP is unbounded!

X1s Xy X35 Xgy X5 = 0

We can increase the value of some nonbasic variable, here x;
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Degeneracy

Degenerate dictionary: A dictionary in which one of the b,
variables becomes zero.

Equivalently: In a basic feasible solution, one of the basic
variables is 0.

Degenerate Pivot: The entering variable stays at 0 without
iIncreasing.

“Degenerate pivots are quite common and usually
harmless.”
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Let’s not give up

Maximise = 3 —05x 42 x —15w

subjectto x= 1 =05 x . entering variable

leaving variable ~

X1s X0y X3, Wi, Wy 2> 0
(X1, X5, X3, Wi, w,) = (0,0,1,0,0)
We can increase the value of some nonbasic variable, here x,
We should not violate any constraints though!

We don’t want any of the slack variables to become negative.

Increase the variable as much as we can (as before): here 0 increase
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The new dictionary

Maximise (= 3 +1.5x +2 W, 4+0.5w,
. entering variable

subject to gy X3 + |1 NER —0.5 w,

leaving variable”

X1s X0y X3, Wi, Wy 2> 0
(xl, X2, X3, W]’ Wz) —_ (0,0,1,0,0)
We can now increase x; to x; = 2

The pivot is not degenerate!

It will actually lead to a final dictionary, and an optimal solution.



Pictorially



Pictorially




Pictorially

non-degenerate pivot

Dictionary 1 Dictionary 2

Solution 1 Solution 2




Pictorially

non-degenerate pivot non-degenerate pivot

Dictionary 1 Dictionary 2 Dictionary 3
Solution 1 Solution 2 Solution 3



Pictorially

non-degenerate pivot non-degenerate pivot

Dictionary 1 Dictionary 2 Dictionary 3
Solution 1 Solution 2 Solution 3

degenerate pivot

Dictionary 4
Solution 3



Pictorially

non-degenerate pivot non-degenerate pivot

Dictionary 1 Dictionary 2 Dictionary 3
Solution 1 Solution 2 Solution 3

degenerate pivot

degenerate pivot

Dictionary 5 Dictionary 4

Solution 3 Solution 3



Pictorially

non-degenerate pivot non-degenerate pivot

Dictionary 1 Dictionary 2 Dictionary 3
Solution 1 Solution 2 Solution 3

degenerate pivot

non-degenerate pivot degenr IOiVOt

. . Dicti 4
Dictionary 6 Dictionary 5 ictionary

Solution 4

Solution 3 Solution 3



Pictorially

non-degenerate pivot non-degenerate pivot

Dictionary 1 Dictionary 2 Dictionary 3
Solution 1 Solution 2 Solution 3

non-degenerate pivot degenerate pivot

Dictionary 7

Solution 5 TN |
(optimal) non-degenerate pivot deger plvot

Dictionary 5 Dictionary 4
Solution 3 Solution 3

Dictionary 6
Solution 4




Could this happen though?



Could this happen though?




Could this happen though?

n-degenerate pivo

Dictionary 1 Dictionary 2
Solution 1 Solution 2




Could this happen though?

non-degenerate pivot non-degenerate pivot

Dictionary 1 Dictionary 2 Dictionary 3
Solution 1 Solution 2 Solution 3



Could this happen though?

non-degenerate pivot non-degenerate pivot

Dictionary 1 Dictionary 2 Dictionary 3
Solution 1 Solution 2 Solution 3

degenerate pivot

Dictionary 4
Solution 3



Could this happen though?

non-degenerate pivot non-degenerate pivot

Dictionary 1 Dictionary 2 Dictionary 3
Solution 1 Solution 2 Solution 3

degenerate pivot

degenerate pivot

Dictionary 5 Dictionary 4

Solution 3 Solution 3



Could this happen though?

non-degenerate pivot non-degenerate pivot

Dictionary 1 Dictionary 2 Dictionary 3
Solution 1 Solution 2 Solution 3

degenerate pivot

degenerate pivot degenerate pivot

Dictionary 6 Dictionary 5 Ictionary

Solution 4

Solution 3 Solution 3



Could this happen though?

non-degenerate pivot non-degenerate pivot

Dictionary 1 Dictionary 2 Dictionary 3
Solution 1 Solution 2 Solution 3

degenerate pivot

degenerate pivot degenerate pivot

Dictionary 5 Dictionary 4

DICtIOnary 6 Solution 3 Solution 3

Solution 4

"~ 7 degenerate pivot



Could this happen though?

non-degenerate pivot non-degenerate pivot

Dictionary 1 Dictionary 2 Dictionary 3
Solution 1 Solution 2 Solution 3

If this happens, the algorithm would never terminate! degenerate pivot

degenerate pivot degenerate pivot

Dictionary 5 Dictionary 4

DICtIOnary 6 Solution 3 Solution 3

Solution 4
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Cycling

In theory: Cycling can happen.
In practice: Cycling rarely happens.

But non-degenerate pivots are quite common.
Can we avoid cycling in theory too?

Bland’s rule: For both the entering variable and the leaving
variable, choose the one with the smallest index.
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The part of each hyperplane that intersects with the feasible
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Geometry

Every constraint corresponds to a hyperplane, which defines a halfspace.

The intersection of those halfspaces is the feasible region, which is a
polyhedron (or polytope).

The part of each hyperplane that intersects with the feasible region is
called a facet.

A facet corresponds to a constraint satisfied with equality, e.qg.,
X|+2x=3

In terms of the dictionary, a facet corresponds to the corresponding
variable (original or slack) being 0.



Geometry

Consider an LP with three variables X, x,, X;.

In terms of the dictionary, a facet corresponds to the
corresponding variable (original or slack) being 0.

An edge corresponds to two variables being 0.

A vertex corresponds to three variables being 0.
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Example

intersection of four facets

Maximise  x; + 2x, + 3x;

subject to X+ 2x;, <2
Xy +2x;, <2
X15 X0, X3 2> 0

\ >L2-\‘3=2

X 1

The intersection point corresponds to the same solution of the LP.
But it corresponds to four different basic feasible solutions/dictionaries.
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Theorem: If the simplex method does not cycle, it
terminates.

Proof: A dictionary is determined by which variables are
basic and which are non-basic.

possibilities.

n'm!

n+m> ~(n+m)!
)=

There only (



Simplex Running Time



Simplex Running Time

First: Simplex is a method, not an algorithm, parameterised by the pivoting rule.



Simplex Running Time

First: Simplex is a method, not an algorithm, parameterised by the pivoting rule.

Bad news: None of the known pivoting rules are known to result in a
polynomial-time algorithm.



Simplex Running Time

First: Simplex is a method, not an algorithm, parameterised by the pivoting rule.

Bad news: None of the known pivoting rules are known to result in a
polynomial-time algorithm.

More bad news: Most of the known pivoting rules have been shown to result in
exponential running time.



Simplex Running Time

First: Simplex is a method, not an algorithm, parameterised by the pivoting rule.

Bad news: None of the known pivoting rules are known to result in a
polynomial-time algorithm.

More bad news: Most of the known pivoting rules have been shown to result in
exponential running time.

Good news: In practice the algorithm is quite efficient/fast.



Simplex Running Time

First: Simplex is a method, not an algorithm, parameterised by the pivoting rule.

Bad news: None of the known pivoting rules are known to result in a
polynomial-time algorithm.

More bad news: Most of the known pivoting rules have been shown to result in
exponential running time.

Good news: In practice the algorithm is quite efficient/fast.

More good news: “Beyond the worst-case analysis” shows that the algorithm is
also efficient in theory.



Simplex Running Time

First: Simplex is a method, not an algorithm, parameterised by the pivoting rule.

Bad news: None of the known pivoting rules are known to result in a
polynomial-time algorithm.

More bad news: Most of the known pivoting rules have been shown to result in
exponential running time.

Good news: In practice the algorithm is quite efficient/fast.

More good news: “Beyond the worst-case analysis” shows that the algorithm is
also efficient in theory.

Even more good news: We have other algorithms that run in worst-case
polynomial running time (Ellipsoid Method, Interior Point Methods).
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Duality

Suppose that we have a linear program, which we will refer to
as the primal.

We will construct another linear program, which we will refer to
as the dual.

The variables of the primal become the constraints of the dual
and vice-versa.

Maximisation becomes minimisation.

The two linear programs will have a very important connection.
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+ 612 nx S o

+a, x, <b,

m,n-n

?

< becomes >

ap )y tappyr t ...
dy 1 Y1 T ayoYy T -

m variables
n constraints

.+b,y,

+ al,mym
+ a2,mym > &)

.+ Ay mYm > C,

?

Matrix A gets transposed



Weak Duality

Let x be any feasible solution to the Primal and let y be any
feasible solution to the Dual. Then we have that

value(x) < value(y)



Weak Duality

Fact 3: Let f by any (s-t) flow and (S, T) be any (s-t) cut. Then
v(f) < c(S, T).




Strong Duality

Let X be any feasible solution to the Primal and let y be any
feasible solution to the Dual. If

value(x) = value(y)

then x and y are both optimal solutions.
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Pictorially

possible values of the primal

How can we prove that a solution x to the primal is
maximum??

Find a solution y to the dual with value(y) = value(x)



Strong Duality
(complete statement)

Theorem (Strong Duality, von Neumann 1947): One of the
following is true:

1. Both the primal and the dual are feasible, and let x* € R”
and y* € R" be any optimal solutions to the primal and the
dual, respectively. Then ¢ ' x* = b y*.

2. The primal is infeasible and the dual is unbounded.
3. The primal is unbounded and the dual is infeasible.

4. Both the primal and the dual are infeasible.



LP-Duality and the Simplex
Method




LP-Duality and the Simplex
Method

The proof of the strong duality theorem follows from the proof of
correctness of the Simplex method.



LP-Duality and the Simplex
Method

The proof of the strong duality theorem follows from the proof of
correctness of the Simplex method.

We will not cover this, take the strong duality theorem as a given.



LP-Duality and the Simplex
Method

The proof of the strong duality theorem follows from the proof of
correctness of the Simplex method.

We will not cover this, take the strong duality theorem as a given.

Interesting observation: Consider the final dictionary of the simplex
method at which we compute an optimal solution x™ to the primal.




LP-Duality and the Simplex
Method

The proof of the strong duality theorem follows from the proof of
correctness of the Simplex method.

We will not cover this, take the strong duality theorem as a given.

Interesting observation: Consider the final dictionary of the simplex
method at which we compute an optimal solution x™ to the primal.

Let )fi* = — C,.» Where C, . ; is the coefficient of the slack variable

n+j’ ]

xn+j-



LP-Duality and the Simplex
Method

The proof of the strong duality theorem follows from the proof of
correctness of the Simplex method.

We will not cover this, take the strong duality theorem as a given.

Interesting observation: Consider the final dictionary of the simplex
method at which we compute an optimal solution x™ to the primal.

Let )fi* = — C,.» Where C, . ; is the coefficient of the slack variable

n+j’ ]

xn+j-

The values y™ obtained that way are an optimal solution to the dual!



The Final Dictionary

Maximise = 13 — w =2 Xx — W3

subjectto x; = 2 -2 W =2 X +  ws

wy =1 +2 W +5 X,
X3 = +3 Wy + Xo -2 W3

X1s Xy X3, Wi, W, W3 2> 0

w=0,%=0w;=0 x;=2,w,=1,x=1



The Final chtlonar_y
Maximise = 13 @m —2 X — Wy | |

subjectto x; = 2 -2 W =2 X +  ws

wy =1 +2 W +5 X,
X3 = +3 Wy + Xo -2 W3

X1s Xy X3, Wi, W, W3 2> 0

w=0,%=0w;=0 x;=2,w,=1,x=1



The Final Dictiona’rx
Maximise (= 13 @Wl ~ . (- S %

_y>l<
subjectto x, = 2 2w 2 :

e +2 W 5%
=L 43w+ H =2 W

X1, -x2’ x3a Wl, W2’ W3 Z O

w=0,%=0w;=0 x;=2,w,=1,x=1



Sanity check

Maximise  5x; + 4x, + 3x;

subject to

2x;+3x,+x3 <5

A, +x,+2x+3 < 11 Minimise 5y, + 11y, + 8y,
X1, X, X3 2 0 subject to

2y, +4y, +3y; 25
3yi+y, +4y; 24

yi+2y,+2y; 23
V.Y, ¥3 = 0
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Sanity check

Maximise  5x; + 4x, + 3x;

y* = (1,0,1)
subject to
2x;+3x,+x3 <5
A, +x,+2x+3 < 11 Minimise 5y, + 11y, + 8y,
3x;+4x, +2x; < 8 -
S*1+8*1 =13
X1, X, X3 2 0 subject to

2y, +4y, +3y; 25
3yi+y, +4y; 24

yi+2y,+2y; 23
V.Y, ¥3 = 0
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Complementary Slackness

Proposition (Complementary Slackness): Let x* and y*be
feasible solutions to the primal and the dual respectively.

Then x* and y* are both optimal if and only if both of the
following hold:

~ Foreachi = 1,...,m, we have

~ Foreachj =1,...,n, we have
T _
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On an example

Maximise  5x; + 4x, + 3x; = (2.0.1)
y* = (1,0,1)

subject to

2x;+3x,+x3 <5

A, +x,+2x+3 < 11 Minimise 5y, + 11y, + 8y,

3x;+4x, +2x; < 8 yi>0

> .
X1, X, X3 2 0 subject to
261 +4%0+3%1=5 2y +4y, +3y; > 5

K
i >0 3% 1404+4%1=7>53y;+y, +4y; > 4
v =0 1#14+2%0+2%1=3 Y + 2y, +2y; > 3
>0

3 VY2 Y3 2 0



On an example

Maximise  5x; + 4x, + 3x; = (2.0.1)
y* = (1,0,1)
subject to
2x; + 3% + X3 <5 2F243%0+42%1=5
A, +x,+2x+3 < 11 Minimise 5y, + 11y, + 8y,
3x;+4x, +2x; < 8 yi>0
X1, X, X3 2 0 subject to
>0 AR
% =0 15142%042%1=3 Yy + 2y, + 2y; > 3
x5 >0 Yis Y2, ¥3 2 0



Complementary Slackness

Proposition (Complementary Slackness): Let x* and y*be
feasible solutions to the primal and the dual respectively.

Then x* and y* are both optimal if and only if both of the
following hold:

~ Foreachi = 1,...,m, we have

~ Foreachj =1,...,n, we have
T _
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Complementary Slackness

Proof:

We know that ¢ ' x* < ((y*)TA) x*¥ = (yH)(Ax*) < (y*)'h
by weak duality.

By strong duality, when both x* and y* are optimal, the LHS is equal to the RHS,
which means that all inequalities hold with equality.

So in that case we have: (((y*)TA) - CT> x* = 0.

This is only possible if the product is zero for each coordinate, since both terms
are non-negative.

Soforeachj = 1,...,n, we have <(ATy*)j — cj> -xj* = 0.

Similarly for the case of ((Ax*)i — bi) yF=0



The Max-Flow Min-Cut Theorem

Theorem: In every flow network, the value of the maximum
flow is equal to the capacity of the minimum cut.

This is a consequence of the strong duality theorem for
linear programs!



Maximum Flow as an LP

We can write the maximum flow problem as a linear problem.

“Maximise the flow, subject to capacity and flow conservation constraints”.

maximise Z fov — Z fos

veV veV
subject to fuv < cuw, for each uw,v eV
Z fou = Z fuv, for each u eV —{s,t}

veV veV

Jfuv = 0,  for each u,v €V
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We can write the maximum flow problem as a linear problem.

“Maximise the flow, subject to capacity and flow conservation constraints”.

total flow out of s

maximise
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Maximum Flow as an LP

We can write the maximum flow problem as a linear problem.

“Maximise the flow, subject to capacity and flow conservation constraints”.

total flow out of s total flow into s

maximise
subject to fuv < cuw, for each uw,v eV
Z fou = Z fuv, for each u eV —{s,t}

veV veV
Jfuv = 0,  for each u,v €V



Maximum Flow as an LP

We can write the maximum flow problem as a linear problem.

“Maximise the flow, subject to capacity and flow conservation constraints”.

total flow out of s total flow Into s

maximise Z fS,U Z fvs :

eV ”UGV

O >¢~—~"«‘ .,.—ac -, -y

Z fvu = fuv, for each u eV {3 t}

veV veV
fuv >0,  for each u,v eV



Maximum Flow as an LP

We can write the maximum flow problem as a linear problem.

“Maximise the flow, subject to capacity and flow conservation constraints”.

total flow out of s total flow Into s
maximise E fsv E fvs
t veV ,Uev § capacity constraint

T *w ..,.—ac -, -y

subject to ‘f? f u?u < Cuv;‘ for each Y=

veV veV
Jfuv = 0,  for each u,v €V



Maximum Flow as an LP

We can write the maximum flow problem as a linear problem.

“Maximise the flow, subject to capacity and flow conservation constraints”.

total flow out of S

Z fsv

maximise
’UE \%

subject to

UEV

for >0,

i veV

B Sory .-—~5><w qv—:c', s

- f uv %v
vau =3 fur

for each

total flow Into s

" fvs ‘_“

capacity constraint

for each -

for each we {3 t}



Maximum Flow as an LP

We can write the maximum flow problem as a linear problem.

“Maximise the flow, subject to capacity and flow conservation constraints”.

total flow out of S total flow Into s
maximise E fsv E fvs
¢ eV vEV capacity constraint

subject to

flow ’ Z fvu = fuv, for each U E V {3 t} ‘

conservation t veV UEV

fu,,, Z O " for each u,v eV




Maximum Flow as an LP

We can write the maximum flow problem as a linear problem.

“Maximise the flow, subject to capacity and flow conservation constraints”.

total flow out of S total flow Into s
maximise E fsv E fvS
¢ eV , vEV capacity constraint

subject to

flow ’ Z fvu = Z fuv, for each u € V {3 t} |

conservation t veV veV

fu,,, 2 O for each ,




Maximum Flow as an LP

We can write the maximum flow problem as a linear problem.

“Maximise the flow, subject to capacity and flow conservation constraints”.

total flow out of S total flow Into s
maximise E fsv E fvS
¢ eV , vEV capacity constraint

subject to

flow ’ Z fvu = Z fuv, for each u € V {3 t} |

conservation t veV veEV

non-negative flow "i'* f uv Z O for each )




Constructing the dual

minimise Z CuvQuw
(u,v)eE
subject to  dyy, — 2y + 2y > 0 for each (u,v) € F,u # s,v #t
ds, + 2z, > 1 for each (s,u) € E
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dy, >0,  for each (u,v) € K

2y > 0 foreach u e V — {t, s}
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Constructing the dual

Thisis7ifuisinSandvisinT
and O otherwise.

Coe . Thisis 7 if uisin S and 0 otherwise.
minimise "

> (0 for each (u,v) € E,u# s,v#t

subject to duv
> 1 for each (s,u) € E
fuisinSandvis # dut — 2, >0 for each (u,t) € E
in T, then duy S dyy > 0. for each (u,v) € E
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dyy € {0,1}, for each (u,v) € E
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Minimum Cut as an ILP
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LP-relaxation

An LP-relaxation of an Integer Linear Program is a linear
program which is identical to the ILP, except all the

integrality constraints have been removed (“relaxed”), or
replaced with non-integral constraints.
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Minimum Cut as an ILP

LP-relaxation
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ILP vs LP-relaxation

feasible region

@® candidate optimal solution for ILP
@ candidate optimal solution for LP-relaxation



ILP vs LP-relaxation



ILP vs LP-relaxation

For a maximisation problem:



ILP vs LP-relaxation

For a maximisation problem:

The optimal value of the ILP is not larger than the optimal
value of the LP-relaxation.



ILP vs LP-relaxation

For a maximisation problem:

The optimal value of the ILP is not larger than the optimal
value of the LP-relaxation.

The ratio
max_value(LP-relaxation) / max_value(LP)

Is called the integrality gap of the LP-formulation.
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Let’s put some facts together.

The Max-Flow LP and the Min-Cut LP-relaxation are duals of each other.

By strong duality, it holds that the optimal value of the Max-Flow LP is equal to
the optimal value of the Min-Cut LP-relaxation.

By the Max-Flow-Min-Cut Theorem, the value of the maximum flow is equal to
the capacity of the minimum cut.

That can only mean one thing:
The value of the Min-Cut LP-relaxation is equal to the value of the Min-Cut LP.
In other words, the Min-Cut LP-formulation has integrality gap 7.

In other words, the Min-Cut LP has an integer optimal solution.
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Back to Maximum Flow

What if we wanted an integer flow instead of any flow?

maximise Z fov — Z fos

veV veV
subject to fuv < cuw, for each uw,v eV
Z fou = Z fuv, for each u eV —{s,t}
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fuw =0,  for each u,v €V
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Back to Maximum Flow

Does the LP-relaxation of this ILP always have an integer
solution?

maximise Z fov — Z fos

veV veV
subject to fuv < cuw, for each uw,v eV
Z fou = Z fuv, for each u eV —{s,t}

veV veV
fuw =0,  for each u,v €V

fuo € R, for each u,v eV
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LPs for Max-Flow and Min-Cut

The Max-Flow problem for integer flows can be written as an
ILP.

The Min-Cut problem can be written as an ILP (cuts are always
integers).

We can write the LP-relaxations of those two |LPs.
For Max-Flow, it finds the maximum fractional flow.
For Min-Cut, it finds the minimum “fractional” cut.

If we solve those LP-relaxations, we will get integer solutions.
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Total Unimodularity

If the constraint matrix A is totally unimodular and b is an
integer vector, then the LP has an integer solution.

The Max-Flow and Min-Cut LP-relaxations admit integer

solutions because their constraint matrices are totally
unimodular.

maximise ¢tz

subject to Ax < b,
r > 0
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To be more precise

Lemma: Suppose A is a totally unimodular matrix and b is
an integer vector. Then every extreme point of

P = {x: AX < b} is integral.

Claim: Suppose A is totally unimodular. Then the matrix
A =(A-Al-DNTis also totally unimodular.

Corollary: Suppose A is a totally unimodular matrix and b is
an integer vector. Then every extreme point of

P={x:Ax=Db, 0 < x < c} is integral.
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maximise Z fsv — Z fus

veV veV
subject to fuv < cuw, for each uw,v eV

Z fou = Z fuv, foreach u eV — {s,t}

UEY s e s mmss s mmmmes et s,
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subject to 'f fu,u < Cyy, _for each o u,v E V ey

Z fvu — Z fuw, for each u € V {s t}

veV.______ vev - R —
f uv Z O for each u, v E V

O<x<c
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Back to maximum flow

maximise Z fsv — Z fus

Z fvu — fuv; fOl“ each U E {S t}

subject to fu,u < cuv, _ for each U, E V » ‘

Xk+Xh-Xi-Xj=0 Avi= Ayj = -1



Back to maximum flow

* Consider the incidence matrix of the flow network (without s and 1):
e Aj=1if edge/ starts at node / in Gz.
e Aj=-1if edge/ ends at node j in Gt.

* Aj =0 otherwise.

Nodes/Edges J K
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Back to maximum flow

Consider the incidence matrix of the flow network (without s and t):
This is precisely the matrix A of the max flow LP.
It suffices to prove that A is totally unimodular, by Corollary.

Lemma: The incidence matrix of any directed graph is totally unimodular.

Nodes/Edges J K




