Algorithms and Data Structures

Modelling with Linear Programs

Knowing how to solve linear programs is very useful.

Knowing how to solve linear programs is very useful.

We might never have to solve one by hand, but we can understand the basic principles of linear programming.

Knowing how to solve linear programs is very useful.

We might never have to solve one by hand, but we can understand the basic principles of linear programming.

In practice: There are many fantastic LP solvers (e.g., CPLEX, Gurobi, whatever-your-favourite-library-of-your-favourite-programming-language-uses, etc).

Knowing how to solve linear programs is very useful.

We might never have to solve one by hand, but we can understand the basic principles of linear programming.

In practice: There are many fantastic LP solvers (e.g., CPLEX, Gurobi, whatever-your-favourite-library-of-your-favourite-programming-language-uses, etc).

It suffices to formulate/model/express a problem as an LP and then ask one of those solvers for the solution.

Consider a production facility for a manufacturing company, which can produce products $1, \ldots, n$.

Consider a production facility for a manufacturing company, which can produce products $1, \ldots, n$.

The products are manufactured out of raw materials. There are m different raw materials $1, \ldots, m$.

Consider a production facility for a manufacturing company, which can produce products $1, \ldots, n$.

The products are manufactured out of raw materials. There are m different raw materials $1, \ldots, m$.

For each raw material i, there is a known amount b_i in stock.

Consider a production facility for a manufacturing company, which can produce products $1, \ldots, n$.

The products are manufactured out of raw materials. There are m different raw materials $1, \ldots, m$.

For each raw material i, there is a known amount b_i in stock.

Each raw material i has a unit cost ρ_i .

Consider a production facility for a manufacturing company, which can produce products $1, \ldots, n$.

The products are manufactured out of raw materials. There are m different raw materials $1, \ldots, m$.

For each raw material i, there is a known amount b_i in stock.

Each raw material i has a unit cost ρ_i .

Each produce is made from known amounts of raw materials. Producing one unit of product j requires α_{ij} units of material i.

Consider a production facility for a manufacturing company, which can produce products $1, \ldots, n$.

The products are manufactured out of raw materials. There are m different raw materials $1, \ldots, m$.

For each raw material i, there is a known amount b_i in stock.

Each raw material i has a unit cost ρ_i .

Each produce is made from known amounts of raw materials. Producing one unit of product j requires α_{ij} units of material i.

Product j can be sold in the market for σ_j pounds per unit.

Consider a production facility for a manufacturing company, which can produce products $1, \ldots, n$.

The products are manufactured out of raw materials. There are m different raw materials $1, \ldots, m$.

For each raw material i, there is a known amount b_i in stock.

Each raw material i has a unit cost ρ_i .

Each produce is made from known amounts of raw materials. Producing one unit of product j requires α_{ij} units of material i.

Product j can be sold in the market for σ_i pounds per unit.

The production manager would like to use the materials in stock to extract as much revenue (= price - cost) as possible.

We already know: $b_i, \rho_i, \alpha_{ij}, \sigma_j$

We already know: $b_i, \rho_i, \alpha_{ij}, \sigma_j$

These are constants or parameters of our problem, not variables.

We already know: $b_i, \rho_i, \alpha_{ij}, \sigma_j$

These are constants or parameters of our problem, not variables.

The variables are chosen by us, trying to model the problem accurately.

We already know: $b_i, \rho_i, \alpha_{ij}, \sigma_j$

These are constants or parameters of our problem, not variables.

The variables are chosen by us, trying to model the problem accurately.

What should we choose for the variables here?

We already know: $b_i, \rho_i, \alpha_{ij}, \sigma_j$

These are constants or parameters of our problem, not variables.

The variables are chosen by us, trying to model the problem accurately.

What should we choose for the variables here?

 x_i : number of units of product j that we will produce.

 x_i : number of units of product j that we will produce.

 x_i : number of units of product j that we will produce.

Revenue: Price - Cost

 x_i : number of units of product j that we will produce.

Revenue: Price - Cost

What is the price of one unit of product *j*?

Consider a production facility for a manufacturing company, which can produce products $1, \ldots, n$.

The products are manufactured out of raw materials. There are m different raw materials $1, \ldots, m$.

For each raw material i, there is a known amount b_i in stock.

Each raw material i has a unit cost ρ_i .

Each produce is made from known amounts of raw materials. Producing one unit of product j requires α_{ij} units of material i.

Product j can be sold in the market for σ_i pounds per unit.

The production manager would like to use the materials in stock to extract as much revenue (= price - cost) as possible.

 x_i : number of units of product j that we will produce.

Revenue: Price - Cost

What is the price of one unit of product j? σ_i

 x_i : number of units of product j that we will produce.

Revenue: Price - Cost

What is the price of one unit of product j? σ_i

What is the cost of producing one unit of product j?

Consider a production facility for a manufacturing company, which can produce products $1, \ldots, n$.

The products are manufactured out of raw materials. There are m different raw materials $1, \ldots, m$.

For each raw material i, there is a known amount b_i in stock.

Each raw material i has a unit cost ρ_i .

Each produce is made from known amounts of raw materials. Producing one unit of product j requires α_{ij} units of material i.

Product j can be sold in the market for σ_i pounds per unit.

The production manager would like to use the materials in stock to extract as much revenue (= price - cost) as possible.

 x_i : number of units of product j that we will produce.

Revenue: Price - Cost

What is the price of one unit of product j? σ_i

What is the cost of producing one unit of product j? $\sum_{i=1}^{\infty} \alpha_{ij} \cdot \rho_i$

 x_i : number of units of product j that we will produce.

Revenue: Price - Cost

What is the price of one unit of product j? σ_i

What is the cost of producing one unit of product j? $\sum_{i=1}^{\infty} \alpha_{ij} \cdot \rho_i$

What is the revenue from one unit of *j*?

 x_i : number of units of product j that we will produce.

Revenue: Price - Cost

What is the price of one unit of product j? σ_j

What is the cost of producing one unit of product j? $\sum_{i=1}^{\infty} \alpha_{ij} \cdot \rho_i$

What is the revenue from one unit of j? $c_j = \sigma_j - \sum_{i=1}^{j} \alpha_{ij} \cdot \rho_i$

 x_i : number of units of product j that we will produce.

Revenue: Price - Cost

What is the price of one unit of product j? σ_j

What is the cost of producing one unit of product j? $\sum_{i=1}^{m} \alpha_{ij} \cdot \rho_i$

What is the revenue from one unit of j? $c_j = \sigma_j - \sum_{i=1}^m \alpha_{ij} \cdot \rho_i$

What is the revenue from all the units of of j?

 x_i : number of units of product j that we will produce.

Revenue: Price - Cost

What is the price of one unit of product j? σ_i

What is the cost of producing one unit of product j? $\sum_{i=1}^{m} \alpha_{ij} \cdot \rho_i$

What is the revenue from one unit of j? $c_j = \sigma_j - \sum_{i=1}^{\infty} \alpha_{ij} \cdot \rho_i$

What is the revenue from all the units of of j? $c_j \cdot x_j$

 x_i : number of units of product j that we will produce.

Revenue: Price - Cost

What is the price of one unit of product j? σ_j

What is the cost of producing one unit of product j? $\sum_{i=1}^{m} \alpha_{ij} \cdot \rho_i$

What is the revenue from one unit of j? $c_j = \sigma_j - \sum_{i=1}^m \alpha_{ij} \cdot \rho_i$

What is the revenue from all the units of of j? $c_j \cdot x_j$

What is the revenue in total?

 x_i : number of units of product j that we will produce.

Revenue: Price - Cost

What is the price of one unit of product j? σ_i

What is the cost of producing one unit of product j? $\sum_{i=1}^{m} \alpha_{ij} \cdot \rho_i$

What is the revenue from one unit of j? $c_j = \sigma_j - \sum_{i=1}^m \alpha_{ij} \cdot \rho_i$

What is the revenue from all the units of of j? $c_j \cdot x_j$

What is the revenue in total? $\sum_{i=1}^{n} c_i x_i$

Our LP formulation

Maximise $\sum_{i=1}^{n} c_{i} x_{j}$

subject to ?

 x_i : number of units of product j that we will produce.

 x_i : number of units of product j that we will produce.

1. We cannot produce negative amounts:

 x_i : number of units of product j that we will produce.

1. We cannot produce negative amounts:

$$x_i \ge 0 \text{ for } j = 1,...,n$$

 x_i : number of units of product j that we will produce.

1. We cannot produce negative amounts:

$$x_j \ge 0 \text{ for } j = 1,...,n$$

2. We cannot produce more than the raw material allows:

Managing a Production Facility

Consider a production facility for a manufacturing company, which can produce products $1, \ldots, n$.

The products are manufactured out of raw materials. There are m different raw materials $1, \ldots, m$.

For each raw material i, there is a known amount b_i in stock.

Each raw material i has a unit cost ρ_i .

Each produce is made from known amounts of raw materials. Producing one unit of product j requires α_{ij} units of material i.

Product j can be sold in the market for σ_i pounds per unit.

The production manager would like to use the materials in stock to extract as much revenue (= price - cost) as possible.

 x_i : number of units of product j that we will produce.

1. We cannot produce negative amounts:

$$x_j \ge 0 \text{ for } j = 1, ..., n$$

2. We cannot produce more than the raw material allows:

 x_i : number of units of product j that we will produce.

1. We cannot produce negative amounts:

$$x_j \ge 0 \text{ for } j = 1, ..., n$$

2. We cannot produce more than the raw material allows:

$$\sum_{j=1}^{m} \alpha_{ij} x_j \le b_i \text{ for } i = 1, \dots, m$$

Our LP formulation

Maximise
$$\sum_{i=1}^n c_j x_j$$
 subject to
$$\sum_{j=1}^n \alpha_{ij} \cdot x_j \le b_i \quad \text{ for all } i=1,\dots,m$$

$$x_j \ge 0 \quad \text{ for all } j=1,\dots,n$$

Integer Linear programming

maximise
$$\sum_{j=1}^{n} c_j x_j$$
 subject to
$$\sum_{j=1}^{n} \alpha_{ij} x_j \leq b_i, \quad i=1,...,m$$

$$x_j \geq 0, \quad j=1,...,n$$

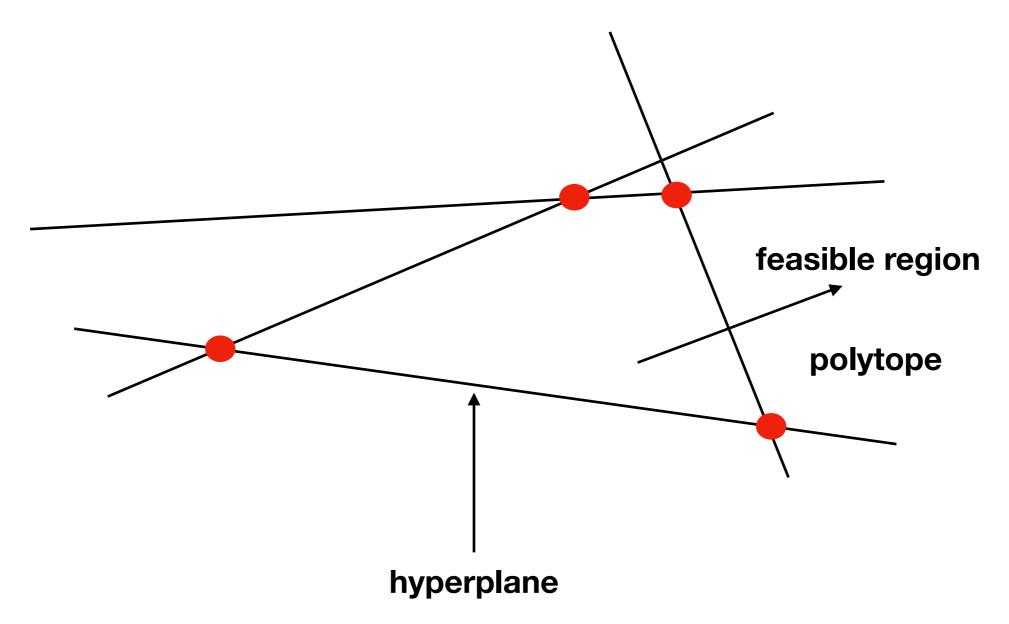
$$x_j \text{ is integer}$$

Integer Linear programming

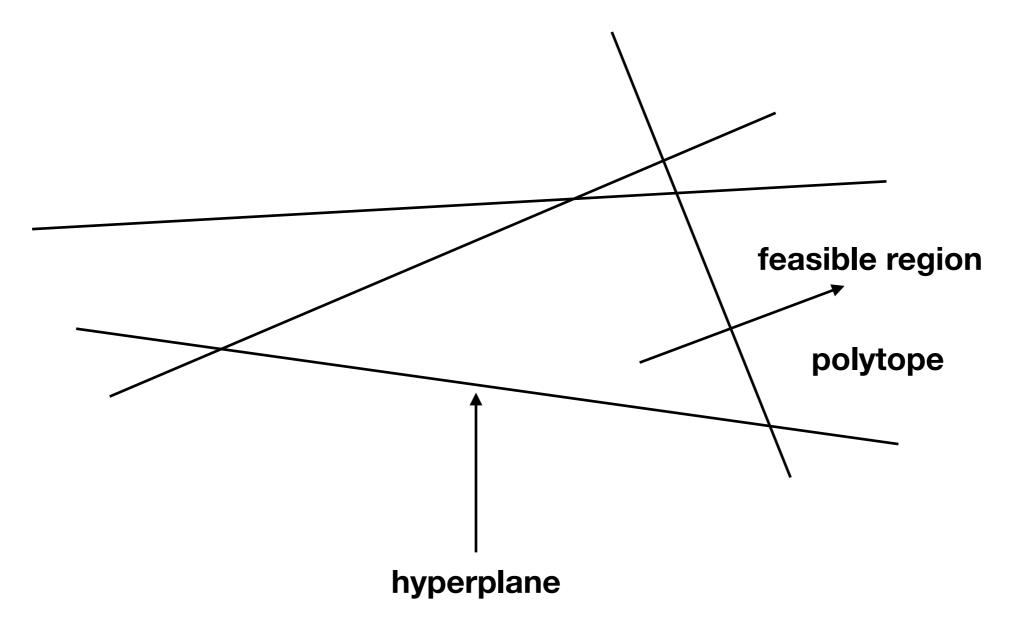
maximise
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to
$$\sum_{j=1}^{n} \alpha_{ij}x_{j} \leq b_{i}, \quad i=1,...,m$$

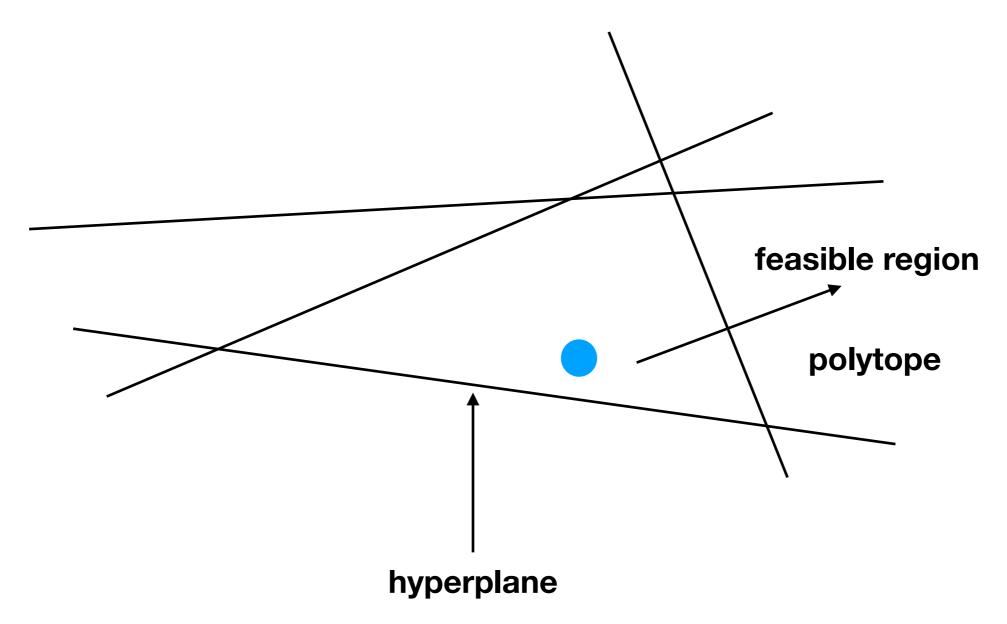
$$x_{j} \geq 0, \quad j=1,...,n$$

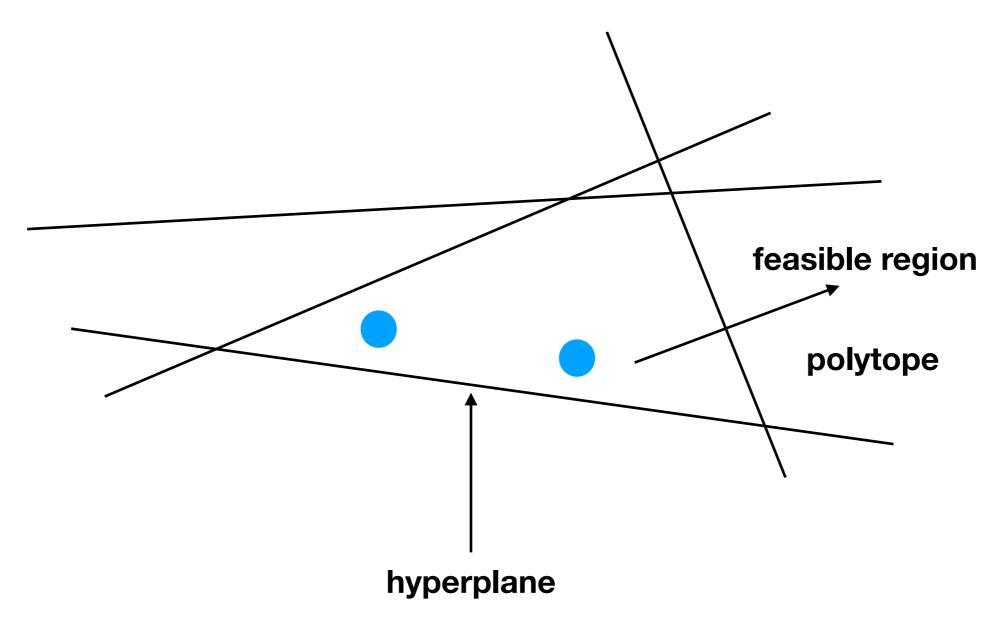
$$x_{j} \text{ is integer}$$

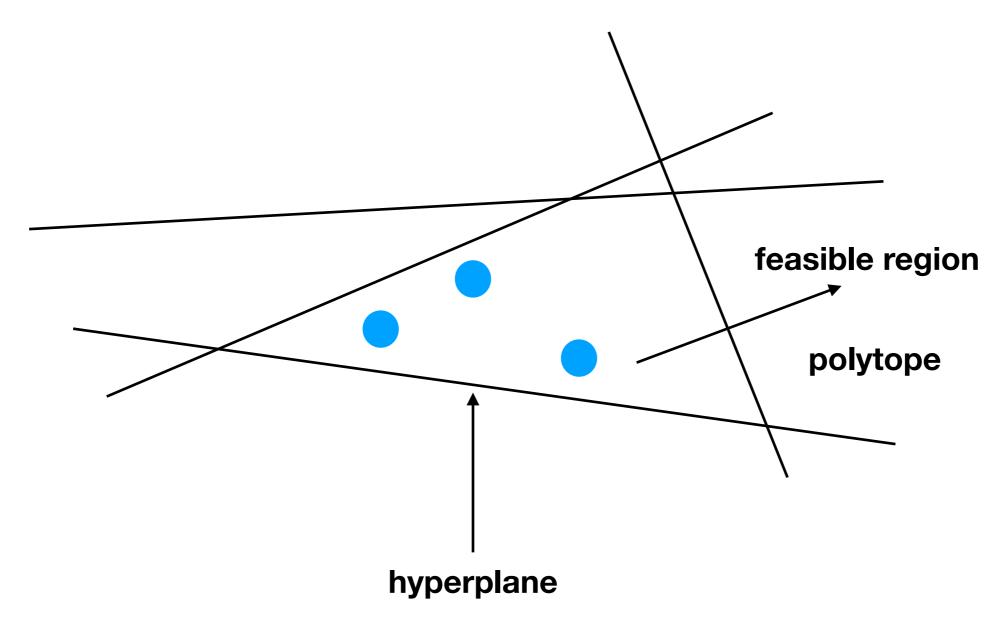


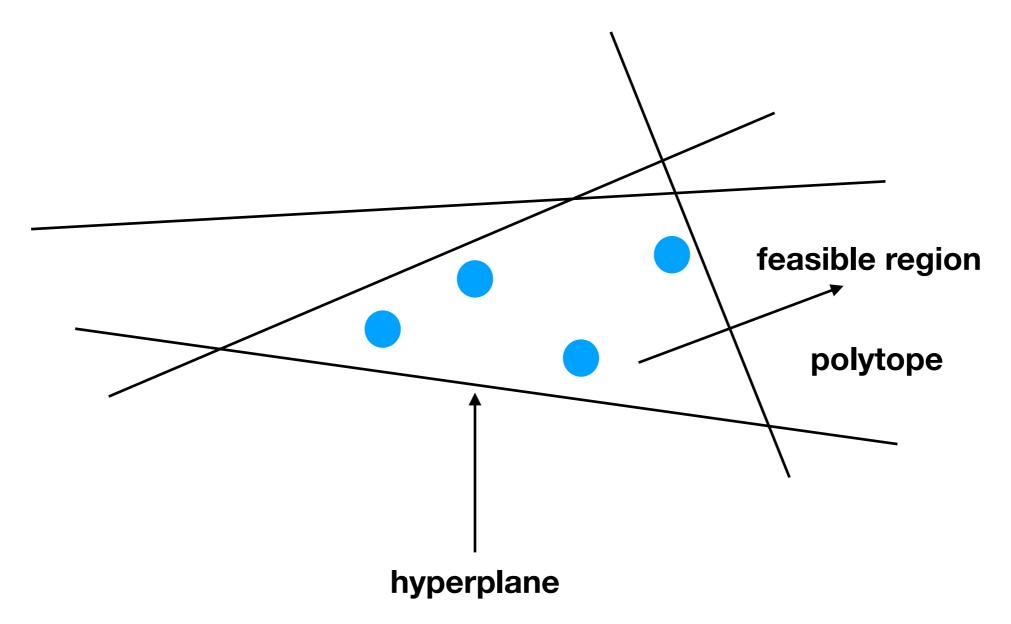
candidate optimal solution

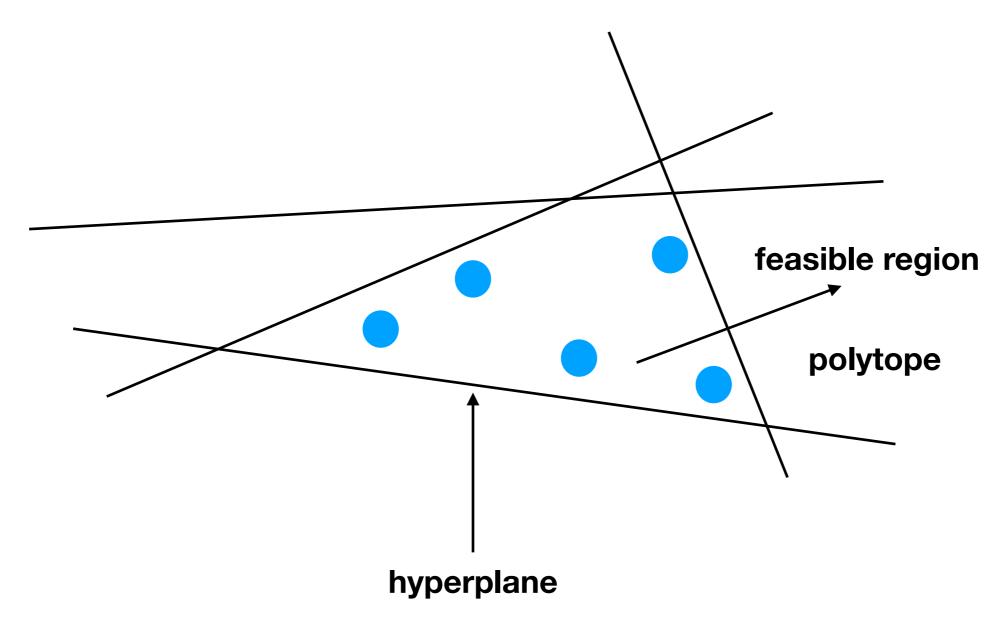


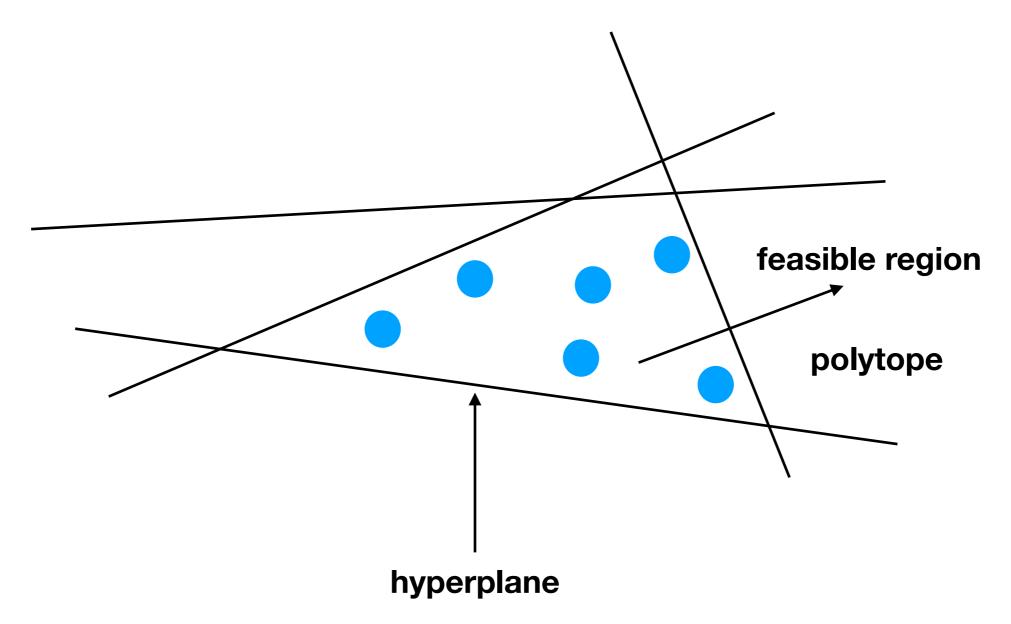


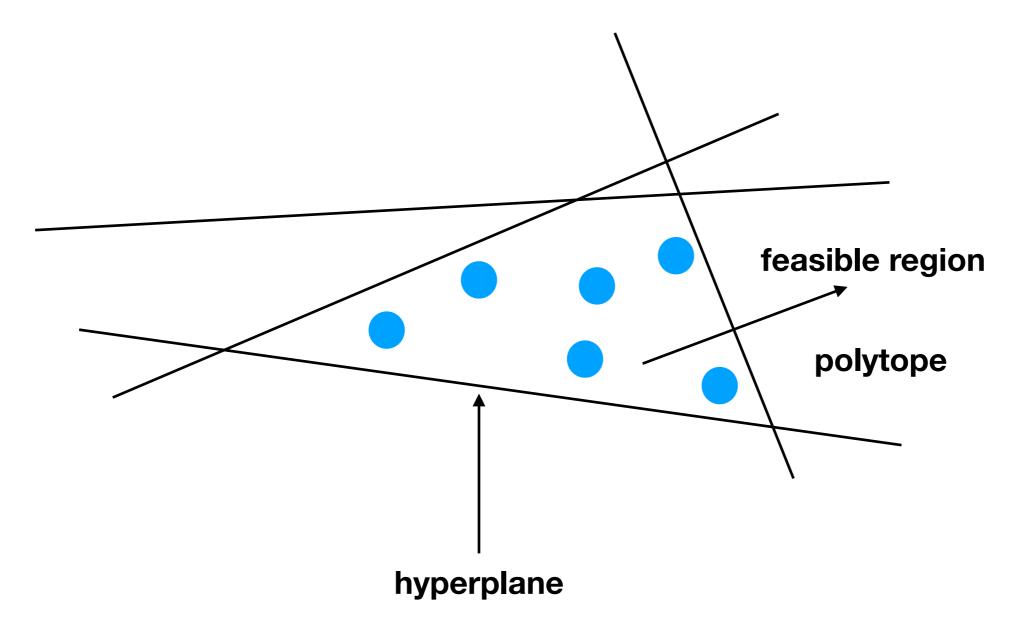












candidate optimal solution

ILPs cannot be solved efficiently in general.

ILPs cannot be solved efficiently in general.

The state-of-the-art solvers perform a lot of clever optimisations to solve them as fast as possible.

ILPs cannot be solved efficiently in general.

The state-of-the-art solvers perform a lot of clever optimisations to solve them as fast as possible.

Some ILPs might take a really long time, but some may be solved in reasonable time.

ILPs cannot be solved efficiently in general.

The state-of-the-art solvers perform a lot of clever optimisations to solve them as fast as possible.

Some ILPs might take a really long time, but some may be solved in reasonable time.

For many problems the ILP formulation beats all the other alternatives.

ILPs cannot be solved efficiently in general.

The state-of-the-art solvers perform a lot of clever optimisations to solve them as fast as possible.

Some ILPs might take a really long time, but some may be solved in reasonable time.

For many problems the ILP formulation beats all the other alternatives.

Modelling as ILPs is a very useful skill.

A route is a journey from one destination to another (e.g., Edinburgh to Athens).

A route is a journey from one destination to another (e.g., Edinburgh to Athens).

Each route might consist of several legs (e.g., Edinburgh to London departing at 6.30, London to Frankfurt departing at 10.00, Frankfurt to Athens departing at 16.00).

A route is a journey from one destination to another (e.g., Edinburgh to Athens).

Each route might consist of several legs (e.g., Edinburgh to London departing at 6.30, London to Frankfurt departing at 10.00, Frankfurt to Athens departing at 16.00).

AlgoAir has a set of n specified routes and a set of m specified legs. The routes are denoted by $1, \ldots, n$ and for each leg, we have a parameter a_{ij} that specifies whether the leg is part of route j.

A route is a journey from one destination to another (e.g., Edinburgh to Athens).

Each route might consist of several legs (e.g., Edinburgh to London departing at 6.30, London to Frankfurt departing at 10.00, Frankfurt to Athens departing at 16.00).

AlgoAir has a set of n specified routes and a set of m specified legs. The routes are denoted by 1, ..., n and for each leg, we have a parameter a_{ij} that specifies whether the leg is part of route j.

Every route j has an associated cost c_j .

A route is a journey from one destination to another (e.g., Edinburgh to Athens).

Each route might consist of several legs (e.g., Edinburgh to London departing at 6.30, London to Frankfurt departing at 10.00, Frankfurt to Athens departing at 16.00).

AlgoAir has a set of n specified routes and a set of m specified legs. The routes are denoted by 1, ..., n and for each leg, we have a parameter a_{ij} that specifies whether the leg is part of route j.

Every route j has an associated cost c_j .

We would like to find a subset of the routes such that each leg is included in exactly one route.

We already know: c_j , a_{ij}

We already know: c_j , a_{ij}

These are constants or parameters of our problem, not variables.

We already know: c_j , a_{ij}

These are constants or parameters of our problem, not variables.

Very commonly used in ILP problems: Indicator variables

We already know: c_j , a_{ij}

These are constants or parameters of our problem, not variables.

Very commonly used in ILP problems: Indicator variables

An indicator variable is 1 if something happens and 0 otherwise.

We already know: c_j , a_{ij}

These are constants or parameters of our problem, not variables.

Very commonly used in ILP problems: Indicator variables

An indicator variable is 1 if something happens and 0 otherwise.

Here, we will let $x_j = 1$ if we select route j and $x_j = 0$ otherwise.

We want to minimise the total cost.

We want to minimise the total cost.

The cost of route j is 1 if we schedule it, otherwise it is 0.

We want to minimise the total cost.

The cost of route j is 1 if we schedule it, otherwise it is 0.

So what is the cost of route *j*?

We want to minimise the total cost.

The cost of route j is 1 if we schedule it, otherwise it is 0.

So what is the cost of route *j*?

$$c_j \cdot x_j$$

We want to minimise the total cost.

The cost of route j is 1 if we schedule it, otherwise it is 0.

So what is the cost of route *j*?

$$c_j \cdot x_j$$

What is the total cost of all the routes?

We want to minimise the total cost.

The cost of route j is 1 if we schedule it, otherwise it is 0.

So what is the cost of route *j*?

$$c_j \cdot x_j$$

What is the total cost of all the routes?

$$\sum_{j=1}^{n} c_j x_j$$

 $\mathbf{Minimise} \qquad \sum_{j=1}^{n} c_j x_j$

subject to ?

Every leg is included in exactly one route.

Every leg is included in exactly one route.

Recall: $a_{ij} = 1$ iff leg i is part of the route (not necessarily included).

Every leg is included in exactly one route.

Recall: $a_{ij} = 1$ iff leg i is part of the route (not necessarily included).

What is the total number of routes that i is a part of?

Every leg is included in exactly one route.

Recall: $a_{ij} = 1$ iff leg i is part of the route (not necessarily included).

What is the total number of routes that i is a part of?

$$\sum_{j=1}^{n} a_{ij}$$

Every leg is included in exactly one route.

Recall: $a_{ij} = 1$ iff leg i is part of the route (not necessarily included).

What is the total number of routes that i is a part of?

$$\sum_{j=1}^{n} a_{ij}$$

But some of these routes might not be included. What is the total number of *included* routes that i is a part of?

Every leg is included in exactly one route.

Recall: $a_{ij} = 1$ iff leg i is part of the route (not necessarily included).

What is the total number of routes that i is a part of?

$$\sum_{j=1}^{n} a_{ij}$$

But some of these routes might not be included. What is the total number of *included* routes that i is a part of?

$$\sum_{i=1}^{n} a_{ij} x_j$$

What is the total number of *included* routes that i is a part of?

$$\sum_{j=1}^{n} a_{ij} x_j$$

What is the total number of *included* routes that i is a part of?

$$\sum_{j=1}^{n} a_{ij} x_j$$

How many are these?

What is the total number of *included* routes that i is a part of?

$$\sum_{j=1}^{n} a_{ij} x_j$$

How many are these?

One!

What is the total number of *included* routes that i is a part of?

$$\sum_{j=1}^{n} a_{ij} x_j$$

How many are these?

One!

$$\sum_{i=1}^{n} a_{ij} x_j = 1$$

Minimise
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to
$$\sum_{j=1}^{n} a_{ij}x_{j}$$
 for $i=1,...,m$

Anything else?

Minimise
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to
$$\sum_{i=1}^{n} a_{ij}x_{j}$$
 for $i=1,...,m$

Anything else?

Minimise
$$\sum_{j=1}^n c_j x_j$$
 subject to
$$\sum_{j=1}^n a_{ij} x_j \quad \text{for } i=1,\dots,m$$

$$x_j \in \{0,1\} \quad \text{for } j=1,\dots,n$$

We have n jobs to be scheduled on m machines.

We have n jobs to be scheduled on m machines.

Each job i has a processing time t_{ij} on machine j.

We have n jobs to be scheduled on m machines.

Each job i has a processing time t_{ij} on machine j.

Each machine processes one job after another, but different machines run in parallel.

We have n jobs to be scheduled on m machines.

Each job i has a processing time t_{ij} on machine j.

Each machine processes one job after another, but different machines run in parallel.

We would like to find a way to assign the jobs to the machines such that we minimise the *makespan*, i.e., the completion time of the last machine to finish.

We already know: t_{ij}

We already know: t_{ij}

These are constants or parameters of our problem, not variables.

We already know: t_{ij}

These are constants or parameters of our problem, not variables.

Very commonly used in ILP problems: Indicator variables

We already know: t_{ij}

These are constants or parameters of our problem, not variables.

Very commonly used in ILP problems: Indicator variables

An indicator variable is 1 if something happens and 0 otherwise.

We already know: t_{ij}

These are constants or parameters of our problem, not variables.

Very commonly used in ILP problems: Indicator variables

An indicator variable is 1 if something happens and 0 otherwise.

Here, we will let $x_{ij} = 1$ if we assign job i to machine j and $x_{ij} = 0$ otherwise.

We want to minimise the makespan.

We want to minimise the makespan.

The processing time of a machine is the total processing time of jobs assigned to it,

We want to minimise the makespan.

The processing time of a machine is the total processing time of jobs assigned to it,

i.e.,
$$\sum_{i=1,\ldots,n} t_{ij} x_{ij}$$

We want to minimise the makespan.

The processing time of a machine is the total processing time of jobs assigned to it,

i.e.,
$$\sum_{i=1,\ldots,n} t_{ij} x_{ij}$$

so we want to minimise the maximum processing time,

We want to minimise the makespan.

The processing time of a machine is the total processing time of jobs assigned to it,

i.e.,
$$\sum_{i=1,\ldots,n} t_{ij} x_{ij}$$

so we want to minimise the maximum processing time,

i.e., our objective function is
$$\min \max_{j=1,...,m} \sum_{i=1,...,n} t_{ij} x_{ij}$$

We want to minimise the makespan.

The processing time of a machine is the total processing time of jobs assigned to it,

i.e.,
$$\sum_{i=1,\ldots,n} t_{ij} x_{ij}$$

so we want to minimise the maximum processing time,

i.e., our objective function is $\min_{j=1,...,m} \sum_{i=1,...,n} t_{ij} x_{ij}$

any issues?

We want to minimise the makespan.

The processing time of a machine is the total processing time of jobs assigned to it,

i.e.,
$$\sum_{i=1,\ldots,n} t_{ij} x_{ij}$$

so we want to minimise the maximum processing time,

i.e., our objective function is $\min \max_{j=1,...,m} \sum_{i=1,...,n} t_{ij} x_{ij}$

any issues?

not linear!

Minimise
$$\max_{j=1,...,m} \sum_{i=1,...,n} t_{ij} x_{ij}$$

subject to ?

(Let's put that aside for a second...)

Constraint 1: Every job is assigned to exactly one machine,

Constraint 1: Every job is assigned to exactly one machine,

i.e.,
$$\sum_{j=1,...,m} x_{ij} = 1$$
 for every $i = 1,...,n$

Constraint 1: Every job is assigned to exactly one machine,

i.e.,
$$\sum_{j=1,...,m} x_{ij} = 1$$
 for every $i = 1,...,n$

Constraint 2: The indicator variables correspond to an assignment of the jobs,

Constraint 1: Every job is assigned to exactly one machine,

i.e.,
$$\sum_{j=1,...,m} x_{ij} = 1 \quad \text{for every} \quad i = 1,...,n$$

Constraint 2: The indicator variables correspond to an assignment of the jobs,

i.e.,
$$x_{ij} \in \{0,1\}$$
 for every i, j

Minimise
$$\max_{j=1,...,m} \sum_{i=1,...,n} t_{ij} x_{ij}$$

subject to $\sum_{i=1,...,m} x_{ij} = 1$ for every j = 1,...,m

 $x_{ij} \in \{0,1\}$ for every i,j

(Let's put that aside for a second...)

call this T

Minimise
$$\max_{j=1,...,m} \sum_{i=1,...,n} t_{ij} x_{ij}$$

subject to
$$\sum_{i=1,...,m} x_{ij} = 1$$
 for every $j = 1,...,m$

$$x_{ij} \in \{0,1\}$$
 for every i,j

(Let's put that aside for a second...)

Minimise T

subject to
$$\sum_{i=1,...,m} x_{ij} = 1 \quad \text{for every} \quad j = 1,...,m$$

 $x_{ij} \in \{0,1\}$ for every i,j

Minimise T

subject to
$$\sum_{i=1,...,m} x_{ij} = 1$$
 for every $j = 1,...,m$

$$x_{ij} \in \{0,1\}$$
 for every i,j

What is the relationship between
$$\sum_{i=1,...,n} t_{ij} x_{ij}$$
 and T for any j ?

Minimise T

subject to
$$\sum_{i=1,...,m} x_{ij} = 1$$
 for every $j = 1,...,m$

$$x_{ij} \in \{0,1\}$$
 for every i,j

$$\sum_{i=1,...,n} t_{ij} x_{ij} \le T \text{ for any } j$$

Minimise T

subject to
$$\sum_{i=1,...,m} x_{ij} = 1$$
 for every $j = 1,...,m$

$$x_{ij} \in \{0,1\}$$
 for every i,j

$$\sum_{i=1,\ldots,n} t_{ij} x_{ij} \le T \text{ for any } j$$

A salesman needs to visit n cities, denoted $0,1,\ldots,n-1$.

A salesman needs to visit n cities, denoted $0,1,\ldots,n-1$.

He starts from city 0 and would like to visit each city *exactly* once.

A salesman needs to visit n cities, denoted $0,1,\ldots,n-1$.

He starts from city 0 and would like to visit each city *exactly* once.

There is a known distance c_{ij} between any pair of cities i, j.

A salesman needs to visit n cities, denoted $0,1,\ldots,n-1$.

He starts from city 0 and would like to visit each city *exactly* once.

There is a known distance c_{ij} between any pair of cities i, j.

The salesman would like to minimise the total distance travelled.

A tour can be described as a sequence of cities $0, s_1, s_2, ..., s_{n-1}$.

A tour can be described as a sequence of cities $0, s_1, s_2, ..., s_{n-1}$.

The total number of possible tours is equal to the permutation of n-1 elements, i.e., (n-1)!

A tour can be described as a sequence of cities $0, s_1, s_2, ..., s_{n-1}$.

The total number of possible tours is equal to the permutation of n-1 elements, i.e., (n-1)!

Enumeration is obviously too slow. We will use an ILP formulation approach instead and rely on our clever solvers to be faster than enumeration.

We already know: c_{ij} .

We already know: c_{ij} .

One idea: Let $x_j = 1$ if the tour visits city j and 0 otherwise.

We already know: c_{ij} .

One idea: Let $x_j = 1$ if the tour visits city j and 0 otherwise.

A better idea: Let $x_{ij} = 1$ if the tour visits city i exactly after city j and 0 otherwise.

We already know: c_{ij} .

One idea: Let $x_j = 1$ if the tour visits city j and 0 otherwise.

A better idea: Let $x_{ij} = 1$ if the tour visits city i exactly after city j and 0 otherwise.

Alternative interpretation: Think of the map as a fully connected graph with a node for every city and an edge between every two cities. Then $x_{ij} = 1$ if and only if the edge (i, j) is being used by the tour.

Relatively easy: We only pay the cost for those edges that we used.

Relatively easy: We only pay the cost for those edges that we used.

This is more tricky.

This is more tricky.

Let's start with the easier ones.

This is more tricky.

Let's start with the easier ones.

Once the salesman enters a city, how many cities can he visit in the next step?

This is more tricky.

Let's start with the easier ones.

Once the salesman enters a city, how many cities can he visit in the next step?

Only one.

This is more tricky.

Let's start with the easier ones.

Once the salesman enters a city, how many cities can he visit in the next step?

Only one.

$$\sum_{j \in V} x_{ij} = 1, \text{ for } i = 0, ..., n - 1$$

This is more tricky.

Let's start with the easier ones.

Once the salesman enters a city, how many cities can he visit in the next step?

Only one.

$$\sum_{j \in V} x_{ij} = 1, \text{ for } i = 0, ..., n-1$$

Once the salesman enters a city, from how many cities did he travel from?

This is more tricky.

Let's start with the easier ones.

Once the salesman enters a city, how many cities can he visit in the next step?

Only one.

$$\sum_{j \in V} x_{ij} = 1, \text{ for } i = 0, ..., n - 1$$

Once the salesman enters a city, from how many cities did he travel from?

Only one.

This is more tricky.

Let's start with the easier ones.

Once the salesman enters a city, how many cities can he visit in the next step?

Only one.

$$\sum_{j \in V} x_{ij} = 1, \text{ for } i = 0, ..., n - 1$$

Once the salesman enters a city, from how many cities did he travel from?

Only one.

$$\sum_{i \in V} x_{ij} = 1, \quad \text{for } j = 0, \dots, n - 1$$

Minimise
$$\sum_{i \in V} \sum_{j \in V} c_{ij} x_{ij}$$
 subject to
$$\sum_{i \in V} x_{ij} = 1, \quad \text{for } i = 0, \dots, n-1$$

 $j \in V$

Minimise
$$\sum_{i \in V} \sum_{j \in V} c_{ij} x_{ij}$$

subject to
$$\sum_{i \in V} x_{ij} = 1, \quad \text{for } i = 0, \dots, n-1$$

$$\sum_{i \in V} x_{ij} = 1, \quad \text{for } j = 0, ..., n-1$$

Now to the more tricky ones.

Now to the more tricky ones.

We need to make sure the cities are visited in a single tour, not in multiple disjoint subtours.

Now to the more tricky ones.

We need to make sure the cities are visited in a single tour, not in multiple disjoint subtours.

New variables:

Now to the more tricky ones.

We need to make sure the cities are visited in a single tour, not in multiple disjoint subtours.

New variables:

Let t_i be the number of the stop along the tour.

Now to the more tricky ones.

We need to make sure the cities are visited in a single tour, not in multiple disjoint subtours.

New variables:

Let t_i be the number of the stop along the tour.

e.g. $t_3 = 4$ means that city 3 was visited 4th during the tour.

Let $x_{ij} = 1$ if the tour visits city i exactly after city j and 0 otherwise.

Let $x_{ij} = 1$ if the tour visits city i exactly after city j and 0 otherwise.

So, when $x_{ij} = 1$, we want $t_j = t_i + 1$.

Let $x_{ij} = 1$ if the tour visits city i exactly after city j and 0 otherwise.

So, when $x_{ij} = 1$, we want $t_j = t_i + 1$.

But at the same time, when $x_{ij} = 0$, we would like t_i to not impose any constraint on t_i .

Let $x_{ij} = 1$ if the tour visits city i exactly after city j and 0 otherwise.

So, when $x_{ij} = 1$, we want $t_j = t_i + 1$.

Let $x_{ij} = 1$ if the tour visits city i exactly after city j and 0 otherwise.

So, when $x_{ij} = 1$, we want $t_j = t_i + 1$.

Let's actually use $t_i \ge t_i + 1$ instead.

Let $x_{ij} = 1$ if the tour visits city i exactly after city j and 0 otherwise.

So, when $x_{ij} = 1$, we want $t_j = t_i + 1$.

Let's actually use $t_i \ge t_i + 1$ instead.

This ensures merely that the ordering of cities in the tour is correct (j is visited after i). If all cities are visited in a single tour, we are ok.

Let $x_{ij} = 1$ if the tour visits city i exactly after city j and 0 otherwise.

So, when $x_{ij} = 1$, we want $t_j \ge t_i + 1$.

But at the same time, when $x_{ij} = 0$, we would like t_i to not impose any constraint on t_i .

What we want is the following:

What we want is the following:

$$t_j \ge t_i + 1 \text{ if } x_{ij} = 1$$

What we want is the following:

$$t_j \ge t_i + 1 \text{ if } x_{ij} = 1$$

Something at most as constraining as $t_j \ge 0$ if $x_{ij} = 0$

What we want is the following:

$$t_j \ge t_i + 1 \text{ if } x_{ij} = 1$$

Something at most as constraining as $t_j \ge 0$ if $x_{ij} = 0$

$$\Rightarrow t_i \ge t_i + 1 - n \text{ if } x_{ij} = 0$$

What we want is the following:

$$t_j \ge t_i + 1 \text{ if } x_{ij} = 1$$

Something at most as constraining as $t_j \ge 0$ if $x_{ij} = 0$

$$\Rightarrow t_j \ge t_i + 1 - n \text{ if } x_{ij} = 0$$

Putting them together: $t_j \ge t_i + 1 - n(1 - x_{ij})$

$$\mathbf{Minimise} \qquad \sum_{i \in V} \sum_{j \in V} c_{ij} x_{ij}$$

subject to
$$\sum_{j \in V} x_{ij} = 1, \text{ for } i = 0, ..., n-1$$

$$\mathbf{Minimise} \qquad \sum_{i \in V} \sum_{j \in V} c_{ij} x_{ij}$$

subject to
$$\sum_{j \in V} x_{ij} = 1, \text{ for } i = 0, ..., n-1$$

$$\sum_{i \in V} x_{ij} = 1, \quad \text{for } j = 0, ..., n-1$$

$$\mathbf{Minimise} \qquad \sum_{i \in V} \sum_{j \in V} c_{ij} x_{ij}$$

subject to
$$\sum_{i \in V} x_{ij} = 1, \quad \text{for } i = 0, \dots, n-1$$

$$\sum_{i \in V} x_{ij} = 1, \quad \mathbf{for} \ j = 0, \dots, n-1$$

$$t_j \ge t_i + 1 - n(1 - x_{ij})$$
 for $i \ge 0, j \ge 1, i \ne j$

$$\mathbf{Minimise} \qquad \sum_{i \in V} \sum_{j \in V} c_{ij} x_{ij}$$

subject to
$$\sum_{i \in V} x_{ij} = 1, \quad \text{for } i = 0, \dots, n-1$$

$$\sum_{i \in V} x_{ij} = 1, \quad \text{for } j = 0, ..., n-1$$

$$t_j \ge t_i + 1 - n(1 - x_{ij})$$
 for $i \ge 0, j \ge 1, i \ne j$

$$t_0 = 0$$

$$\begin{aligned} & \underset{i \in V}{\text{Minimise}} & & \sum_{i \in V} \sum_{j \in V} c_{ij} x_{ij} \\ & \text{subject to} & & \sum_{j \in V} x_{ij} = 1, \quad \text{for } i = 0, \dots, n-1 \\ & & \sum_{i \in V} x_{ij} = 1, \quad \text{for } j = 0, \dots, n-1 \\ & & t_j \geq t_i + 1 - n(1-x_{ij}) \quad \text{for } i \geq 0, j \geq 1, i \neq j \\ & & t_0 = 0 \\ & & x_{ii} \in \{0,1\} \quad \text{for } i, j \in V \end{aligned}$$

$$\begin{aligned} & \text{Minimise} & & \sum_{i \in V} \sum_{j \in V} c_{ij} x_{ij} \\ & \text{subject to} & & \sum_{j \in V} x_{ij} = 1, \quad \text{for } i = 0, \dots, n-1 \\ & & \sum_{i \in V} x_{ij} = 1, \quad \text{for } j = 0, \dots, n-1 \\ & & t_j \geq t_i + 1 - n(1 - x_{ij}) \quad \text{for } i \geq 0, j \geq 1, i \neq j \\ & & t_0 = 0 \\ & & x_{ij} \in \{0,1\} \quad \text{for } i, j \in V \\ & t_i \in \{0,1, \dots, n-1\} \quad \text{for } i \in V \end{aligned}$$

Let $x_{ij} = 1$ if the tour visits city i exactly after city j and 0 otherwise.

So, when $x_{ij} = 1$, we want $t_j = t_i + 1$.

Let's actually use $t_i \ge t_i + 1$ instead.

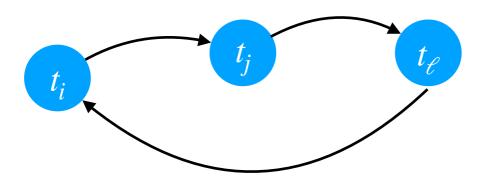
This ensures merely that the ordering of cities in the tour is correct (j is visited after i). If all cities are visited in a single tour, we are ok.

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city 0, and let r be the number of cities visited by this subtour.

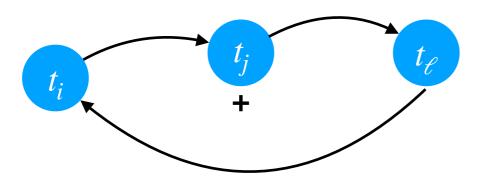
Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city 0, and let r be the number of cities visited by this subtour.



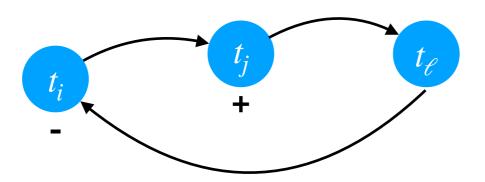
Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city 0, and let r be the number of cities visited by this subtour.



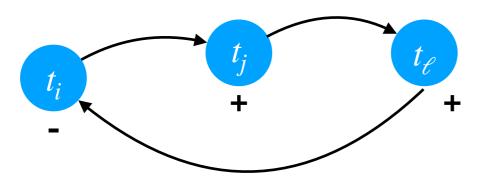
Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city 0, and let r be the number of cities visited by this subtour.



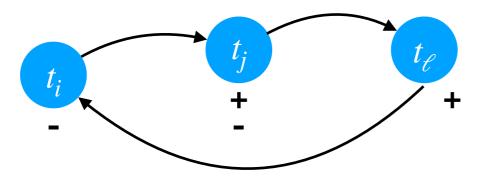
Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city 0, and let r be the number of cities visited by this subtour.



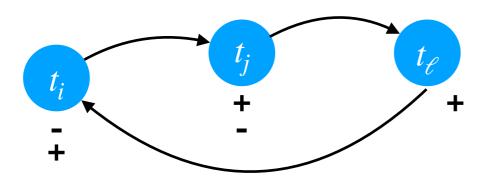
Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city 0, and let r be the number of cities visited by this subtour.



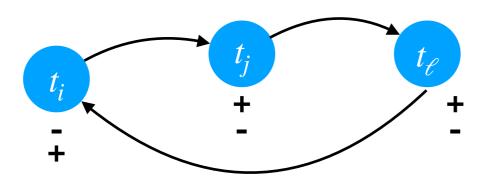
Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city 0, and let r be the number of cities visited by this subtour.



Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city 0, and let r be the number of cities visited by this subtour.



Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city 0, and let r be the number of cities visited by this subtour.

