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Modelling

Knowing how to solve linear programs is very useful.

We might never have to solve one by hand, but we can
understand the basic principles of linear programming.

In practice: There are many fantastic LP solvers (e.g.,
CPLEX, Gurobi, whatever-your-favourite-library-of-your-
favourite-programming-language-uses, etc).

It suffices to formulate/model/express a problem as an LP
and then ask one of those solvers for the solution.
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Consider a production facility for a manufacturing company, which can produce products
1,...,n.

The products are manufactured out of raw materials. There are m different raw materials
1,...,m.

For each raw material i, there is a known amount bi in stock.
Each raw material i has a unit cost p..

Each produce is made from known amounts of raw materials. Producing one unit of product j

requires a;; units of material 7.

Product j can be sold in the market for o; pounds per unit.

The production manager would like to use the materials in stock to extract as much revenue (=
price - cost) as possible.
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Step 1: Choosing the variables

We already know: b, p., o

ij> O

These are constants or parameters of our problem, not
variables.

The variables are chosen by us, trying to model the problem
accurately.

What should we choose for the variables here?

X; : number of units of product j that we will produce.
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Step 2: Writing the objective
function

X; - number of units of product j that we will produce.

Revenue: Price - Cost

What is the price of one unit of product ;? o;

m
What is the cost of producing one unit of product ;? Z @i * P
i=1

m
What is the revenue from one unit of j? ¢; = ¢, — 2 @i * P
i=1

What is the revenue from all the units of of j? i+ X

n

What is the revenue in total? 2 CiX;

i=1



Our LP formulation

n
Maximise Z C.X:

JJ
i=1

subjectto ?
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Step 3: Writing the constraints

X; : number of units of product ; that we will produce.

1. We cannot produce negative amounts:

X; 2 Oforj=1,...,n

2. We cannot produce more than the raw material allows:

m
2 a;x; < bifori=1,...,m
j=1



Our LP formulation

n

Maximise Z C.X:

JJ
i=1

n

subject to Zaij-xjsbi foralli=1,....m
j=1

x>0 forallj=1,...,n
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Integer Linear programming

n

maximise E C;i
j=1

n
SU.bjeCt to Z g5 < bi, 1 = 1, ceey 1T0
Jj=1€e
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Modelling

ILPs cannot be solved efficiently in general.

The state-of-the-art solvers perform a lot of clever
optimisations to solve them as fast as possible.

Some ILPs might take a really long time, but some may be
solved in reasonable time.

For many problems the ILP formulation beats all the other
alternatives.

Modelling as ILPs is a very useful skKill.
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Flight Scheduling

A route is a journey from one destination to another (e.g., Edinburgh to Athens).

Each route might consist of several legs (e.g., Edinburgh to London departing
at 6.30, London to Frankfurt departing at 10.00, Frankfurt to Athens departing
at 16.00).

AlgoAir has a set of n specified routes and a set of m specified legs. The routes
are denoted by 1,..., n and for each leg, we have a parameter a;; that specifies

whether the leg is part of route ;.
Every route J has an associated cost Cj.

We would like to find a subset of the routes such that each leg is included in
exactly one route.
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Step 1: Choosing the variables

We already know: ¢;, a;

These are constants or parameters of our problem, not
variables.

Very commonly used in ILP problems: Indicator variables

An indicator variable is 1 if something happens and O
otherwise.

Here, we will let x; = 1 if we select route j and x; = (0
otherwise.
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Step 2: Writing the objective
function

We want to minimise the total cost.
The cost of route J is 1 if we schedule it, otherwise it is O.
So what is the cost of route j?

Cj X

What is the total cost of all the routes?

n

2 CiXj

j=1



Our ILP formulation

n
Minimise Z CiX;
j=1

subjectto ?
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Every leg is included in exactly one route.

Recall: a;; = | iff leg i is part of the route (not necessarily included).

What is the total number of routes that i is a part of?

Zaz‘j

j=1

But some of these routes might not be included. What is the total number of
included routes that i is a part of?

n

Z a;ix;

j=1
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Step 3: Writing the constraints

What is the total number of included routes that 7 is a part of?

n

2%

J=1
How many are these?

Onel

n

Z a;;iX; = 1

j=1
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Our ILP formulation

Anything else?

n
Minimise Z CiX;
j=1
_ n
subject to Zaijxj fori=1,...m
J=1

x, €{0,1} forj=1,..n
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Unrelated Machine
Scheduling

We have 7 jobs to be scheduled on 7 machines.
Each job i has a processing time 7;; on machine ;.

Each machine processes one job after another, but different
machines run in parallel.

We would like to find a way to assign the jobs to the
machines such that we minimise the makespan, i.e., the
completion time of the last machine to finish.
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Step 1: Choosing the variables

We already know: 7;;

These are constants or parameters of our problem, not
variables.

Very commonly used in ILP problems: Indicator variables

An indicator variable is 1 if something happens and O
otherwise.

Here, we will let x;; = 1 if we assign job i to machine j and

x; = 0 otherwise.
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Step 2: Writing the objective
function
We want to minimise the makespan.

The processing time of a machine is the total processing time
of jobs assigned to i,

e ), 1%
i=1,....n

so we want to minimise the maximum processing time,

§»anyissues?

; mm maX Z i ]

l.e., our objective function Is
§ not linear!
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Minimise |
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Our ILP formulation

Minimise T

l

subject to Z X;j = 1 forevery j=1,....m
=1,....m

x; € {0,1} for every i,j

2 t;x; < 1 forany j
=1,...,n
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The Travelling Salesman
Problem

A salesman needs to visit 7 cities, denoted O0,1.....,n — 1.

He starts from city 0 and would like to visit each city exactly
once.

There is a known distance c;; between any pair of cities i, ;.

The salesman would like to minimise the total distance
travelled.
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The Travelling Salesman
Problem

A tour can be described as a sequence of cities
0,81, 89, -5 8, _1-
The total number of possible tours is equal to the
permutation of n — 1 elements, i.e., (n — 1)!

Enumeration is obviously too slow. We will use an ILP
formulation approach instead and rely on our clever solvers
to be faster than enumeration.
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Step 1: Choosing the variables

We already know: ¢;;.

One idea: Let x; = 1 if the tour visits city j and 0 otherwise.

A better idea: Let X = | if the tour visits city i exactly after city

J and 0 otherwise.

Alternative interpretation: Think of the map as a fully connected
graph with a node for every city and an edge between every

two cities. Then x;; = 1 if and only if the edge (i, j) is being

used by the tour.
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Step 2: Writing the objective
function

Relatively easy: We only pay the cost for those edges that
we used.

Minimise Z 2 CiiX;j

eV jev
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Step 3: Writing the constraints

Now to the more tricky ones.

We need to make sure the cities are visited in a single tour,
not in multiple disjoint subtours.

New variables:

Let 7. be the number of the stop along the tour.

e.g. 1, = 4 means that city 3 was visited 4th during the
tour.
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Let x;; = 1 if the tour visits city i exactly after city j and O

otherwise.

So, when x; = I, wewant#; > 7, + 1.

But at the same time, when x;; = 0, we would like 7, to not

Impose any constraint on L.
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The art of coming up with
constraints

What we want is the following:

L2t + Lifx; =1

Something at most as constraining as 7; > 0 if x;; = 0
>t 26+ 1—-nifx; =0

Putting them together: 7, > 7, + 1 — n(1 — x;)
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Relation to previous variables

Let x;; = 1 if the tour visits city i exactly after city j and O

otherwise.

So, when x; = I, wewant 7, =7, + 1.

Let’s actually use 7; > 1; + 1 instead.

This ensures merely that the ordering of cities in the tour is

correct (j is visited after 1 ). If all cities are visited in a single
tour, we are OK.
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sides for all the cities j in the subtour.




No subtours

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city O,
and let 7 be the number of cities visited by this subtour.

Consider the constraint 7, > 1, + 1 — n(1 — x;;) and sum both

sides for all the cities j in the subtour.

o ©
x




No subtours

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city O,
and let 7 be the number of cities visited by this subtour.

Consider the constraint 7, > 1, + 1 — n(1 — x;;) and sum both

sides for all the cities j in the subtour.

O ©°
« ¥




No subtours

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city O,
and let 7 be the number of cities visited by this subtour.

Consider the constraint 7, > 1, + 1 — n(1 — x;;) and sum both

sides for all the cities j in the subtour.

.




No subtours

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city O,
and let 7 be the number of cities visited by this subtour.

Consider the constraint 7, > 1, + 1 — n(1 — x;;) and sum both

sides for all the cities j in the subtour.

.




No subtours

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city O,
and let 7 be the number of cities visited by this subtour.

Consider the constraint 7, > 1, + 1 — n(1 — x;;) and sum both

sides for all the cities j in the subtour.




No subtours

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city O,
and let 7 be the number of cities visited by this subtour.

Consider the constraint 7, > 1, + 1 — n(1 — x;;) and sum both

sides for all the cities j in the subtour.




No subtours

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city O,
and let 7 be the number of cities visited by this subtour.

Consider the constraint 7, > 1, + 1 — n(1 — x;;) and sum both

sides for all the cities j in the subtour.




No subtours

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city O,
and let 7 be the number of cities visited by this subtour.

Consider the constraint 7, > 1, + 1 — n(1 — x;;) and sum both

sides for all the cities j in the subtour.

LHS = X

RHS =X +7r
contradiction




