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Knowing how to solve linear programs is very useful.

We might never have to solve one by hand, but we can 
understand the basic principles of linear programming.

In practice: There are many fantastic LP solvers (e.g., 
CPLEX, Gurobi, whatever-your-favourite-library-of-your-
favourite-programming-language-uses, etc). 

It suffices to formulate/model/express a problem as an LP 
and then ask one of those solvers for the solution.
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The products are manufactured out of raw materials. There are  different raw materials 
.

m
1,…, m

For each raw material , there is a known amount  in stock.i bi

Each raw material  has a unit cost .i ρi

Each produce is made from known amounts of raw materials. Producing one unit of product  
requires  units of material .

j
αij i

Product  can be sold in the market for  pounds per unit. j σj

The production manager would like to use the materials in stock to extract as much revenue (= 
price - cost)  as possible. 
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Modelling
ILPs cannot be solved efficiently in general.

The state-of-the-art solvers perform a lot of clever 
optimisations to solve them as fast as possible.

Some ILPs might take a really long time, but some may be 
solved in reasonable time.

For many problems the ILP formulation beats all the other 
alternatives.

Modelling as ILPs is a very useful skill.
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A route is a journey from one destination to another (e.g., Edinburgh to Athens).

Each route might consist of several legs (e.g., Edinburgh to London departing 
at 6.30, London to Frankfurt departing at 10.00, Frankfurt to Athens departing 
at 16.00).

AlgoAir has a set of  specified routes and a set of  specified legs. The routes 
are denoted by  and for each leg, we have a parameter  that specifies 
whether the leg is part of route .

n m
1,…, n aij

j

Every route  has an associated cost . j cj

We would like to find a subset of the routes such that each leg is included in 
exactly one route. 
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Step 1: Choosing the variables

We already know: cj, aij

These are constants or parameters of our problem, not 
variables. 

Very commonly used in ILP problems: Indicator variables

An indicator variable is 1 if something happens and 0 
otherwise.

Here, we will let  if we select route  and  
otherwise.

xj = 1 j xj = 0
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Our ILP formulation

n

∑
j=1

aijxj for i = 1,…, m

Minimise
n

∑
j=1

cjxj

subject to

Anything else?

xj ∈ {0,1} for j = 1,…, n
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We have  jobs to be scheduled on  machines.n m

Each job  has a processing time  on machine .i tij j

Each machine processes one job after another, but different 
machines run in parallel.

We would like to find a way to assign the jobs to the 
machines such that we minimise the makespan, i.e., the 
completion time of the last machine to finish.
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The processing time of a machine is the total processing time 
of jobs assigned to it,

i.e., ∑
i=1,…,n

tijxij

so we want to minimise the maximum processing time,

i.e., our objective function is min max
j=1,…,m ∑

i=1,…,n

tijxij

Step 2: Writing the objective 
function

any issues?

not linear!



Our ILP formulation

?

Minimise max
j=1,…,m ∑

i=1,…,n

tijxij

subject to

(Let’s put that aside for a second…)



Step 3: Writing the constraints



Constraint 1: Every job is assigned to exactly one machine,

Step 3: Writing the constraints



Constraint 1: Every job is assigned to exactly one machine,

i.e., ∑
j=1,…,m

xij = 1 for every  i = 1,…, n

Step 3: Writing the constraints



Constraint 1: Every job is assigned to exactly one machine,

i.e., ∑
j=1,…,m

xij = 1 for every  i = 1,…, n

Constraint 2: The indicator variables correspond to an 
assignment of the jobs,

Step 3: Writing the constraints



Constraint 1: Every job is assigned to exactly one machine,

i.e., ∑
j=1,…,m

xij = 1 for every  i = 1,…, n

Constraint 2: The indicator variables correspond to an 
assignment of the jobs,

i.e., xij ∈ {0,1} for every  i, j
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Minimise max
j=1,…,m ∑

i=1,…,n

tijxij

subject to

(Let’s put that aside for a second…)

∑
i=1,…,m

xij = 1 for every  j = 1,…, m

xij ∈ {0,1} for every  i, j

call this  T
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The Travelling Salesman 
Problem

A salesman needs to visit  cities, denoted .n 0,1,…, n − 1

He starts from city  and would like to visit each city exactly 
once.

0

There is a known distance  between any pair of cities . cij i, j

The salesman would like to minimise the total distance 
travelled.
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The Travelling Salesman 
Problem

A tour can be described as a sequence of cities 
.0,s1, s2, …, sn−1

The total number of possible tours is equal to the 
permutation of  elements, i.e., n − 1 (n − 1)!

Enumeration is obviously too slow. We will use an ILP 
formulation approach instead and rely on our clever solvers 
to be faster than enumeration.
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Step 1: Choosing the variables

We already know: . cij

One idea: Let  if the tour visits city  and 0 otherwise.xj = 1 j

A better idea: Let  if the tour visits city  exactly after city 
 and 0 otherwise.

xij = 1 i
j

Alternative interpretation: Think of the map as a fully connected 
graph with a node for every city and an edge between every 
two cities. Then  if and only if the edge  is being 
used by the tour. 

xij = 1 (i, j)
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Relatively easy: We only pay the cost for those edges that 
we used. 
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Relatively easy: We only pay the cost for those edges that 
we used. 

Minimise ∑
i∈V

∑
j∈V

cijxij

Step 2: Writing the objective 
function
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This is more tricky.

Let’s start with the easier ones.

Once the salesman enters a city, how many cities can he visit in the next step?

Only one. 

∑
j∈V

xij = 1,  for i = 0,…, n − 1

Once the salesman enters a city, from how many cities did he travel from?

Only one.

∑
i∈V

xij = 1,  for j = 0,…, n − 1

Step 3: Writing the constraints



Our developing ILP

∑
j∈V

xij = 1,  for i = 0,…, n − 1

Minimise ∑
i∈V

∑
j∈V

cijxij

subject to



Our developing ILP

∑
j∈V

xij = 1,  for i = 0,…, n − 1

Minimise ∑
i∈V

∑
j∈V

cijxij

subject to

∑
i∈V

xij = 1,  for j = 0,…, n − 1



Step 3: Writing the constraints



Now to the more tricky ones.

Step 3: Writing the constraints



Now to the more tricky ones.

We need to make sure the cities are visited in a single tour, 
not in multiple disjoint subtours. 

Step 3: Writing the constraints



Now to the more tricky ones.

We need to make sure the cities are visited in a single tour, 
not in multiple disjoint subtours. 

New variables: 

Step 3: Writing the constraints



Now to the more tricky ones.

We need to make sure the cities are visited in a single tour, 
not in multiple disjoint subtours. 

New variables: 

Let  be the number of the stop along the tour.ti

Step 3: Writing the constraints



Now to the more tricky ones.

We need to make sure the cities are visited in a single tour, 
not in multiple disjoint subtours. 

New variables: 

Let  be the number of the stop along the tour.ti

e.g.  means that city 3 was visited 4th during the 
tour. 

t3 = 4

Step 3: Writing the constraints
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Let  if the tour visits city  exactly after city  and 0 
otherwise.

xij = 1 i j

So, when , we want .xij = 1 tj = ti + 1

Let’s actually use  instead.tj ≥ ti + 1

This ensures merely that the ordering of cities in the tour is 
correct (  is visited after  ). If all cities are visited in a single 
tour, we are ok.
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Let  if the tour visits city  exactly after city  and 0 
otherwise.


So, when , we want .


But at the same time, when , we would like  to not 
impose any constraint on .

xij = 1 i j

xij = 1 tj ≥ ti + 1

xij = 0 ti
tj

Relation to previous variables
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What we want is the following:

 if tj ≥ ti + 1 xij = 1

Something at most as constraining as  if tj ≥ 0 xij = 0

  if ⇒ tj ≥ ti + 1 − n xij = 0

Putting them together: tj ≥ ti + 1 − n(1 − xij)

The art of coming up with 
constraints
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Let  if the tour visits city  exactly after city  and 0 
otherwise.


So, when , we want .


Let’s actually use  instead.


This ensures merely that the ordering of cities in the tour is 
correct (  is visited after  ). If all cities are visited in a single 
tour, we are ok.

xij = 1 i j

xij = 1 tj = ti + 1

tj ≥ ti + 1

j i
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Assume that we instead have two disjoint subtours.


Consider one of these subtours that does not include city , 
and let  be the number of cities visited by this subtour. 


Consider the constraint  and sum both 
sides for all the cities  in the subtour. 

0
r

tj ≥ ti + 1 − n(1 − xij)
j

No subtours

ti
tj
+

tℓ

-
+

-+ -

LHS =  
RHS =  
contradiction

X
X + r


