
Algorithms and Data Structures
Modelling with Linear Programs

Modelling

Modelling

Knowing how to solve linear programs is very useful.

Modelling

Knowing how to solve linear programs is very useful.

We might never have to solve one by hand, but we can
understand the basic principles of linear programming.

Modelling

Knowing how to solve linear programs is very useful.

We might never have to solve one by hand, but we can
understand the basic principles of linear programming.

In practice: There are many fantastic LP solvers (e.g.,
CPLEX, Gurobi, whatever-your-favourite-library-of-your-
favourite-programming-language-uses, etc).

Modelling

Knowing how to solve linear programs is very useful.

We might never have to solve one by hand, but we can
understand the basic principles of linear programming.

In practice: There are many fantastic LP solvers (e.g.,
CPLEX, Gurobi, whatever-your-favourite-library-of-your-
favourite-programming-language-uses, etc).

It suffices to formulate/model/express a problem as an LP
and then ask one of those solvers for the solution.

Managing a Production
Facility

Managing a Production
Facility

Consider a production facility for a manufacturing company, which can produce products
.1,…, n

Managing a Production
Facility

Consider a production facility for a manufacturing company, which can produce products
.1,…, n

The products are manufactured out of raw materials. There are different raw materials
.

m
1,…, m

Managing a Production
Facility

Consider a production facility for a manufacturing company, which can produce products
.1,…, n

The products are manufactured out of raw materials. There are different raw materials
.

m
1,…, m

For each raw material , there is a known amount in stock.i bi

Managing a Production
Facility

Consider a production facility for a manufacturing company, which can produce products
.1,…, n

The products are manufactured out of raw materials. There are different raw materials
.

m
1,…, m

For each raw material , there is a known amount in stock.i bi

Each raw material has a unit cost .i ρi

Managing a Production
Facility

Consider a production facility for a manufacturing company, which can produce products
.1,…, n

The products are manufactured out of raw materials. There are different raw materials
.

m
1,…, m

For each raw material , there is a known amount in stock.i bi

Each raw material has a unit cost .i ρi

Each produce is made from known amounts of raw materials. Producing one unit of product
requires units of material .

j
αij i

Managing a Production
Facility

Consider a production facility for a manufacturing company, which can produce products
.1,…, n

The products are manufactured out of raw materials. There are different raw materials
.

m
1,…, m

For each raw material , there is a known amount in stock.i bi

Each raw material has a unit cost .i ρi

Each produce is made from known amounts of raw materials. Producing one unit of product
requires units of material .

j
αij i

Product can be sold in the market for pounds per unit. j σj

Managing a Production
Facility

Consider a production facility for a manufacturing company, which can produce products
.1,…, n

The products are manufactured out of raw materials. There are different raw materials
.

m
1,…, m

For each raw material , there is a known amount in stock.i bi

Each raw material has a unit cost .i ρi

Each produce is made from known amounts of raw materials. Producing one unit of product
requires units of material .

j
αij i

Product can be sold in the market for pounds per unit. j σj

The production manager would like to use the materials in stock to extract as much revenue (=
price - cost) as possible.

Step 1: Choosing the variables

Step 1: Choosing the variables

We already know: bi, ρi, αij, σj

Step 1: Choosing the variables

We already know: bi, ρi, αij, σj

These are constants or parameters of our problem, not
variables.

Step 1: Choosing the variables

We already know: bi, ρi, αij, σj

These are constants or parameters of our problem, not
variables.

The variables are chosen by us, trying to model the problem
accurately.

Step 1: Choosing the variables

We already know: bi, ρi, αij, σj

These are constants or parameters of our problem, not
variables.

The variables are chosen by us, trying to model the problem
accurately.

What should we choose for the variables here?

Step 1: Choosing the variables

We already know: bi, ρi, αij, σj

These are constants or parameters of our problem, not
variables.

The variables are chosen by us, trying to model the problem
accurately.

What should we choose for the variables here?

 : number of units of product that we will produce.xj j

Step 2: Writing the objective
function

 : number of units of product that we will produce.xj j

Step 2: Writing the objective
function

 : number of units of product that we will produce.xj j

Revenue: Price - Cost

Step 2: Writing the objective
function

 : number of units of product that we will produce.xj j

Revenue: Price - Cost

What is the price of one unit of product ?j

Step 2: Writing the objective
function

Managing a Production
Facility

Consider a production facility for a manufacturing company, which can produce products
.

The products are manufactured out of raw materials. There are different raw materials
.

For each raw material , there is a known amount in stock.

Each raw material has a unit cost .

Each produce is made from known amounts of raw materials. Producing one unit of product
requires units of material .

Product can be sold in the market for pounds per unit.

The production manager would like to use the materials in stock to extract as much revenue (=
price - cost) as possible.

1,…, n

m
1,…, m

i bi

i ρi

j
αij i

j σj

 : number of units of product that we will produce.xj j

Revenue: Price - Cost

What is the price of one unit of product ? j σj

Step 2: Writing the objective
function

 : number of units of product that we will produce.xj j

Revenue: Price - Cost

What is the price of one unit of product ? j σj

What is the cost of producing one unit of product ?j

Step 2: Writing the objective
function

Managing a Production
Facility

Consider a production facility for a manufacturing company, which can produce products
.

The products are manufactured out of raw materials. There are different raw materials
.

For each raw material , there is a known amount in stock.

Each raw material has a unit cost .

Each produce is made from known amounts of raw materials. Producing one unit of product
requires units of material .

Product can be sold in the market for pounds per unit.

The production manager would like to use the materials in stock to extract as much revenue (=
price - cost) as possible.

1,…, n

m
1,…, m

i bi

i ρi

j
αij i

j σj

 : number of units of product that we will produce.xj j

Revenue: Price - Cost

What is the price of one unit of product ? j σj

What is the cost of producing one unit of product ? j
m

∑
i=1

αij ⋅ ρi

Step 2: Writing the objective
function

 : number of units of product that we will produce.xj j

Revenue: Price - Cost

What is the price of one unit of product ? j σj

What is the cost of producing one unit of product ? j
m

∑
i=1

αij ⋅ ρi

What is the revenue from one unit of ? j

Step 2: Writing the objective
function

 : number of units of product that we will produce.

Revenue: Price - Cost

What is the price of one unit of product ?

What is the cost of producing one unit of product ?

What is the revenue from one unit of ?

xj j

j σj

j
m

∑
i=1

αij ⋅ ρi

j cj = σj −
m

∑
i=1

αij ⋅ ρi

Step 2: Writing the objective
function

 : number of units of product that we will produce.

Revenue: Price - Cost

What is the price of one unit of product ?

What is the cost of producing one unit of product ?

What is the revenue from one unit of ?

What is the revenue from all the units of of ?

xj j

j σj

j
m

∑
i=1

αij ⋅ ρi

j cj = σj −
m

∑
i=1

αij ⋅ ρi

j

Step 2: Writing the objective
function

 : number of units of product that we will produce.

Revenue: Price - Cost

What is the price of one unit of product ?

What is the cost of producing one unit of product ?

What is the revenue from one unit of ?

What is the revenue from all the units of of ?

xj j

j σj

j
m

∑
i=1

αij ⋅ ρi

j cj = σj −
m

∑
i=1

αij ⋅ ρi

j cj ⋅ xj

Step 2: Writing the objective
function

 : number of units of product that we will produce.

Revenue: Price - Cost

What is the price of one unit of product ?

What is the cost of producing one unit of product ?

What is the revenue from one unit of ?

What is the revenue from all the units of of ?

What is the revenue in total?

xj j

j σj

j
m

∑
i=1

αij ⋅ ρi

j cj = σj −
m

∑
i=1

αij ⋅ ρi

j cj ⋅ xj

Step 2: Writing the objective
function

 : number of units of product that we will produce.

Revenue: Price - Cost

What is the price of one unit of product ?

What is the cost of producing one unit of product ?

What is the revenue from one unit of ?

What is the revenue from all the units of of ?

What is the revenue in total?

xj j

j σj

j
m

∑
i=1

αij ⋅ ρi

j cj = σj −
m

∑
i=1

αij ⋅ ρi

j cj ⋅ xj

n

∑
i=1

cjxj

Step 2: Writing the objective
function

Our LP formulation

?

Maximise
n

∑
i=1

cjxj

subject to

Step 3: Writing the constraints

 : number of units of product that we will produce.xj j

Step 3: Writing the constraints

 : number of units of product that we will produce.xj j

1. We cannot produce negative amounts:

Step 3: Writing the constraints

 : number of units of product that we will produce.xj j

1. We cannot produce negative amounts:

 for xj ≥ 0 j = 1,…, n

Step 3: Writing the constraints

 : number of units of product that we will produce.xj j

1. We cannot produce negative amounts:

 for xj ≥ 0 j = 1,…, n

2. We cannot produce more than the raw material allows:

Step 3: Writing the constraints

Managing a Production
Facility

Consider a production facility for a manufacturing company, which can produce products
.

The products are manufactured out of raw materials. There are different raw materials
.

For each raw material , there is a known amount in stock.

Each raw material has a unit cost .

Each produce is made from known amounts of raw materials. Producing one unit of product
requires units of material .

Product can be sold in the market for pounds per unit.

The production manager would like to use the materials in stock to extract as much revenue (=
price - cost) as possible.

1,…, n

m
1,…, m

i bi

i ρi

j
αij i

j σj

 : number of units of product that we will produce.xj j

1. We cannot produce negative amounts:

 for xj ≥ 0 j = 1,…, n

2. We cannot produce more than the raw material allows:

Step 3: Writing the constraints

 : number of units of product that we will produce.xj j

1. We cannot produce negative amounts:

 for xj ≥ 0 j = 1,…, n

2. We cannot produce more than the raw material allows:

 for
m

∑
j=1

αijxj ≤ bi i = 1,…, m

Step 3: Writing the constraints

Our LP formulation

n

∑
j=1

αij ⋅ xj ≤ bi for all i = 1,…, m

Maximise
n

∑
i=1

cjxj

subject to

xj ≥ 0 for all j = 1,…, n

Integer Linear programming

maximise
nX

j=1

cjxj

subject to
nX

j=12
↵ijxj  bi, i = 1, ...,m

xj � 0, j = 1, ..., n
<latexit sha1_base64="OJUrGAuepNCjFAKL935tA36jFgU=">AAAC1HicbVJNj9MwEHXC1xK+Chy5WFRUCFVR0j3ABWkFF467Eu2u1HSjiTNt3bWdbOxAq2AJhLjy47jxG/gTON3Cli4j2Xp6M2/GM+OsFFybKPrp+deu37h5a+92cOfuvfsPOg8fjXRRVwyHrBBFdZKBRsEVDg03Ak/KCkFmAo+zs7et//gDVpoX6r1ZlTiRMFN8yhkYR6WdX0mGM64aEHymwLywzb4NaI8mBpemkbDkkmu0LaNrmTaL17E9bZSlzGG7bC/nSi4lus4WyAw1haXJeQ35lpImXFF7qmgCopxD2vCFpX9yCDynWcr7LhOnPRfcD8OwT2WbfNd6vb+ymZNF/XUlp1xsKVWQoMovOwvSTjcKo7XRqyDegC7Z2GHa+ZHkBaslKsMEaD2Oo9JMGqgMZwJtkNQaS2BnMMOxgwok6kmzXoqlzxyT02lRuaMMXbPbigak1iuZuUgJZq53fS35P9+4NtNXk4arsjao2EWhaS3cxGm7YZrzyi1ArBwAVnH3VsrmUAEz7h+0Q4h3W74KRoMw3g8HR4PuwZvNOPbIE/KUPCcxeUkOyDtySIaEeUfeR++z98Uf+Z/8r/63i1Df22gek3/M//4bA2DW/A==</latexit>

xj is integer
<latexit sha1_base64="2pKF5IOoZ9BLAsFdpxgD/Em8u80=">AAACAHicbVA9TwJBEN3DL8Qv1MLCZiMxsSJ3aKIl0cYSE/lIgJC9ZYCVvb3L7pyBXGj8KzYWGmPrz7Dz37jAFQq+ZJKX92YyM8+PpDDout9OZmV1bX0ju5nb2t7Z3cvvH9RMGGsOVR7KUDd8ZkAKBVUUKKERaWCBL6HuD2+mfv0RtBGhusdxBO2A9ZXoCc7QSp380ajzQFsII0yoMFQohD5oOunkC27RnYEuEy8lBZKi0sl/tbohjwNQyCUzpum5EbYTplFwCZNcKzYQMT5kfWhaqlgApp3MHpjQU6t0aS/UthTSmfp7ImGBMePAt50Bw4FZ9Kbif14zxt5VOxEqihEUny/qxZJiSKdp0K7QwFGOLWFcC3sr5QOmGUebWc6G4C2+vExqpaJ3XizdXRTK12kcWXJMTsgZ8cglKZNbUiFVwsmEPJNX8uY8OS/Ou/Mxb8046cwh+QPn8wdQkpY5</latexit>

Integer Linear programming

maximise
nX

j=1

cjxj

subject to
nX

j=12
↵ijxj  bi, i = 1, ...,m

xj � 0, j = 1, ..., n
<latexit sha1_base64="OJUrGAuepNCjFAKL935tA36jFgU=">AAAC1HicbVJNj9MwEHXC1xK+Chy5WFRUCFVR0j3ABWkFF467Eu2u1HSjiTNt3bWdbOxAq2AJhLjy47jxG/gTON3Cli4j2Xp6M2/GM+OsFFybKPrp+deu37h5a+92cOfuvfsPOg8fjXRRVwyHrBBFdZKBRsEVDg03Ak/KCkFmAo+zs7et//gDVpoX6r1ZlTiRMFN8yhkYR6WdX0mGM64aEHymwLywzb4NaI8mBpemkbDkkmu0LaNrmTaL17E9bZSlzGG7bC/nSi4lus4WyAw1haXJeQ35lpImXFF7qmgCopxD2vCFpX9yCDynWcr7LhOnPRfcD8OwT2WbfNd6vb+ymZNF/XUlp1xsKVWQoMovOwvSTjcKo7XRqyDegC7Z2GHa+ZHkBaslKsMEaD2Oo9JMGqgMZwJtkNQaS2BnMMOxgwok6kmzXoqlzxyT02lRuaMMXbPbigak1iuZuUgJZq53fS35P9+4NtNXk4arsjao2EWhaS3cxGm7YZrzyi1ArBwAVnH3VsrmUAEz7h+0Q4h3W74KRoMw3g8HR4PuwZvNOPbIE/KUPCcxeUkOyDtySIaEeUfeR++z98Uf+Z/8r/63i1Df22gek3/M//4bA2DW/A==</latexit>

xj is integer
<latexit sha1_base64="2pKF5IOoZ9BLAsFdpxgD/Em8u80=">AAACAHicbVA9TwJBEN3DL8Qv1MLCZiMxsSJ3aKIl0cYSE/lIgJC9ZYCVvb3L7pyBXGj8KzYWGmPrz7Dz37jAFQq+ZJKX92YyM8+PpDDout9OZmV1bX0ju5nb2t7Z3cvvH9RMGGsOVR7KUDd8ZkAKBVUUKKERaWCBL6HuD2+mfv0RtBGhusdxBO2A9ZXoCc7QSp380ajzQFsII0yoMFQohD5oOunkC27RnYEuEy8lBZKi0sl/tbohjwNQyCUzpum5EbYTplFwCZNcKzYQMT5kfWhaqlgApp3MHpjQU6t0aS/UthTSmfp7ImGBMePAt50Bw4FZ9Kbif14zxt5VOxEqihEUny/qxZJiSKdp0K7QwFGOLWFcC3sr5QOmGUebWc6G4C2+vExqpaJ3XizdXRTK12kcWXJMTsgZ8cglKZNbUiFVwsmEPJNX8uY8OS/Ou/Mxb8046cwh+QPn8wdQkpY5</latexit>

Feasible region

feasible region

hyperplane

polytope

candidate optimal solutioncandidate optimal solution

Feasible region

feasible region

hyperplane

polytope

Feasible region

feasible region

hyperplane

polytope

Feasible region

feasible region

hyperplane

polytope

Feasible region

feasible region

hyperplane

polytope

Feasible region

feasible region

hyperplane

polytope

Feasible region

feasible region

hyperplane

polytope

Feasible region

feasible region

hyperplane

polytope

Feasible region

feasible region

hyperplane

polytope

candidate optimal solution

Modelling

Modelling
ILPs cannot be solved efficiently in general.

Modelling
ILPs cannot be solved efficiently in general.

The state-of-the-art solvers perform a lot of clever
optimisations to solve them as fast as possible.

Modelling
ILPs cannot be solved efficiently in general.

The state-of-the-art solvers perform a lot of clever
optimisations to solve them as fast as possible.

Some ILPs might take a really long time, but some may be
solved in reasonable time.

Modelling
ILPs cannot be solved efficiently in general.

The state-of-the-art solvers perform a lot of clever
optimisations to solve them as fast as possible.

Some ILPs might take a really long time, but some may be
solved in reasonable time.

For many problems the ILP formulation beats all the other
alternatives.

Modelling
ILPs cannot be solved efficiently in general.

The state-of-the-art solvers perform a lot of clever
optimisations to solve them as fast as possible.

Some ILPs might take a really long time, but some may be
solved in reasonable time.

For many problems the ILP formulation beats all the other
alternatives.

Modelling as ILPs is a very useful skill.

Flight Scheduling

Flight Scheduling

A route is a journey from one destination to another (e.g., Edinburgh to Athens).

Flight Scheduling

A route is a journey from one destination to another (e.g., Edinburgh to Athens).

Each route might consist of several legs (e.g., Edinburgh to London departing
at 6.30, London to Frankfurt departing at 10.00, Frankfurt to Athens departing
at 16.00).

Flight Scheduling

A route is a journey from one destination to another (e.g., Edinburgh to Athens).

Each route might consist of several legs (e.g., Edinburgh to London departing
at 6.30, London to Frankfurt departing at 10.00, Frankfurt to Athens departing
at 16.00).

AlgoAir has a set of specified routes and a set of specified legs. The routes
are denoted by and for each leg, we have a parameter that specifies
whether the leg is part of route .

n m
1,…, n aij

j

Flight Scheduling

A route is a journey from one destination to another (e.g., Edinburgh to Athens).

Each route might consist of several legs (e.g., Edinburgh to London departing
at 6.30, London to Frankfurt departing at 10.00, Frankfurt to Athens departing
at 16.00).

AlgoAir has a set of specified routes and a set of specified legs. The routes
are denoted by and for each leg, we have a parameter that specifies
whether the leg is part of route .

n m
1,…, n aij

j

Every route has an associated cost . j cj

Flight Scheduling

A route is a journey from one destination to another (e.g., Edinburgh to Athens).

Each route might consist of several legs (e.g., Edinburgh to London departing
at 6.30, London to Frankfurt departing at 10.00, Frankfurt to Athens departing
at 16.00).

AlgoAir has a set of specified routes and a set of specified legs. The routes
are denoted by and for each leg, we have a parameter that specifies
whether the leg is part of route .

n m
1,…, n aij

j

Every route has an associated cost . j cj

We would like to find a subset of the routes such that each leg is included in
exactly one route.

Step 1: Choosing the variables

Step 1: Choosing the variables

We already know: cj, aij

Step 1: Choosing the variables

We already know: cj, aij

These are constants or parameters of our problem, not
variables.

Step 1: Choosing the variables

We already know: cj, aij

These are constants or parameters of our problem, not
variables.

Very commonly used in ILP problems: Indicator variables

Step 1: Choosing the variables

We already know: cj, aij

These are constants or parameters of our problem, not
variables.

Very commonly used in ILP problems: Indicator variables

An indicator variable is 1 if something happens and 0
otherwise.

Step 1: Choosing the variables

We already know: cj, aij

These are constants or parameters of our problem, not
variables.

Very commonly used in ILP problems: Indicator variables

An indicator variable is 1 if something happens and 0
otherwise.

Here, we will let if we select route and
otherwise.

xj = 1 j xj = 0

Step 2: Writing the objective
function

We want to minimise the total cost.

Step 2: Writing the objective
function

We want to minimise the total cost.

The cost of route is 1 if we schedule it, otherwise it is 0.j

Step 2: Writing the objective
function

We want to minimise the total cost.

The cost of route is 1 if we schedule it, otherwise it is 0.j

So what is the cost of route ? j

Step 2: Writing the objective
function

We want to minimise the total cost.

The cost of route is 1 if we schedule it, otherwise it is 0.j

So what is the cost of route ? j

cj ⋅ xj

Step 2: Writing the objective
function

We want to minimise the total cost.

The cost of route is 1 if we schedule it, otherwise it is 0.j

So what is the cost of route ? j

cj ⋅ xj

What is the total cost of all the routes?

Step 2: Writing the objective
function

We want to minimise the total cost.

The cost of route is 1 if we schedule it, otherwise it is 0.j

So what is the cost of route ? j

cj ⋅ xj

What is the total cost of all the routes?

n

∑
j=1

cjxj

Step 2: Writing the objective
function

Our ILP formulation

?

Minimise
n

∑
j=1

cjxj

subject to

Step 3: Writing the constraints

Every leg is included in exactly one route.

Step 3: Writing the constraints

Every leg is included in exactly one route.

Recall: iff leg is part of the route (not necessarily included).aij = 1 i

Step 3: Writing the constraints

Every leg is included in exactly one route.

Recall: iff leg is part of the route (not necessarily included).aij = 1 i

What is the total number of routes that is a part of?i

Step 3: Writing the constraints

Every leg is included in exactly one route.

Recall: iff leg is part of the route (not necessarily included).aij = 1 i

What is the total number of routes that is a part of?i

n

∑
j=1

aij

Step 3: Writing the constraints

Every leg is included in exactly one route.

Recall: iff leg is part of the route (not necessarily included).aij = 1 i

What is the total number of routes that is a part of?i

n

∑
j=1

aij

But some of these routes might not be included. What is the total number of
included routes that is a part of?i

Step 3: Writing the constraints

Every leg is included in exactly one route.

Recall: iff leg is part of the route (not necessarily included).aij = 1 i

What is the total number of routes that is a part of?i

n

∑
j=1

aij

But some of these routes might not be included. What is the total number of
included routes that is a part of?i

n

∑
j=1

aijxj

Step 3: Writing the constraints

What is the total number of included routes that is a part of?i

n

∑
j=1

aijxj

Step 3: Writing the constraints

What is the total number of included routes that is a part of?i

n

∑
j=1

aijxj

How many are these?

Step 3: Writing the constraints

What is the total number of included routes that is a part of?i

n

∑
j=1

aijxj

How many are these?

One!

Step 3: Writing the constraints

What is the total number of included routes that is a part of?i

n

∑
j=1

aijxj

How many are these?

One!

 = 1
n

∑
j=1

aijxj

Step 3: Writing the constraints

Our ILP formulation

n

∑
j=1

aijxj for i = 1,…, m

Minimise
n

∑
j=1

cjxj

subject to

Our ILP formulation

n

∑
j=1

aijxj for i = 1,…, m

Minimise
n

∑
j=1

cjxj

subject to

Anything else?

Our ILP formulation

n

∑
j=1

aijxj for i = 1,…, m

Minimise
n

∑
j=1

cjxj

subject to

Anything else?

xj ∈ {0,1} for j = 1,…, n

Unrelated Machine
Scheduling

Unrelated Machine
Scheduling

We have jobs to be scheduled on machines.n m

Unrelated Machine
Scheduling

We have jobs to be scheduled on machines.n m

Each job has a processing time on machine .i tij j

Unrelated Machine
Scheduling

We have jobs to be scheduled on machines.n m

Each job has a processing time on machine .i tij j

Each machine processes one job after another, but different
machines run in parallel.

Unrelated Machine
Scheduling

We have jobs to be scheduled on machines.n m

Each job has a processing time on machine .i tij j

Each machine processes one job after another, but different
machines run in parallel.

We would like to find a way to assign the jobs to the
machines such that we minimise the makespan, i.e., the
completion time of the last machine to finish.

Step 1: Choosing the variables

Step 1: Choosing the variables

We already know: tij

Step 1: Choosing the variables

We already know: tij

These are constants or parameters of our problem, not
variables.

Step 1: Choosing the variables

We already know: tij

These are constants or parameters of our problem, not
variables.

Very commonly used in ILP problems: Indicator variables

Step 1: Choosing the variables

We already know: tij

These are constants or parameters of our problem, not
variables.

Very commonly used in ILP problems: Indicator variables

An indicator variable is 1 if something happens and 0
otherwise.

Step 1: Choosing the variables

We already know: tij

These are constants or parameters of our problem, not
variables.

Very commonly used in ILP problems: Indicator variables

An indicator variable is 1 if something happens and 0
otherwise.

Here, we will let if we assign job to machine and
 otherwise.

xij = 1 i j
xij = 0

Step 2: Writing the objective
function

We want to minimise the makespan.

Step 2: Writing the objective
function

We want to minimise the makespan.

The processing time of a machine is the total processing time
of jobs assigned to it,

Step 2: Writing the objective
function

We want to minimise the makespan.

The processing time of a machine is the total processing time
of jobs assigned to it,

i.e., ∑
i=1,…,n

tijxij

Step 2: Writing the objective
function

We want to minimise the makespan.

The processing time of a machine is the total processing time
of jobs assigned to it,

i.e., ∑
i=1,…,n

tijxij

so we want to minimise the maximum processing time,

Step 2: Writing the objective
function

We want to minimise the makespan.

The processing time of a machine is the total processing time
of jobs assigned to it,

i.e., ∑
i=1,…,n

tijxij

so we want to minimise the maximum processing time,

i.e., our objective function is min max
j=1,…,m ∑

i=1,…,n

tijxij

Step 2: Writing the objective
function

We want to minimise the makespan.

The processing time of a machine is the total processing time
of jobs assigned to it,

i.e., ∑
i=1,…,n

tijxij

so we want to minimise the maximum processing time,

i.e., our objective function is min max
j=1,…,m ∑

i=1,…,n

tijxij

Step 2: Writing the objective
function

any issues?

We want to minimise the makespan.

The processing time of a machine is the total processing time
of jobs assigned to it,

i.e., ∑
i=1,…,n

tijxij

so we want to minimise the maximum processing time,

i.e., our objective function is min max
j=1,…,m ∑

i=1,…,n

tijxij

Step 2: Writing the objective
function

any issues?

not linear!

Our ILP formulation

?

Minimise max
j=1,…,m ∑

i=1,…,n

tijxij

subject to

(Let’s put that aside for a second…)

Step 3: Writing the constraints

Constraint 1: Every job is assigned to exactly one machine,

Step 3: Writing the constraints

Constraint 1: Every job is assigned to exactly one machine,

i.e., ∑
j=1,…,m

xij = 1 for every i = 1,…, n

Step 3: Writing the constraints

Constraint 1: Every job is assigned to exactly one machine,

i.e., ∑
j=1,…,m

xij = 1 for every i = 1,…, n

Constraint 2: The indicator variables correspond to an
assignment of the jobs,

Step 3: Writing the constraints

Constraint 1: Every job is assigned to exactly one machine,

i.e., ∑
j=1,…,m

xij = 1 for every i = 1,…, n

Constraint 2: The indicator variables correspond to an
assignment of the jobs,

i.e., xij ∈ {0,1} for every i, j

Step 3: Writing the constraints

Our ILP formulation

Minimise max
j=1,…,m ∑

i=1,…,n

tijxij

subject to

(Let’s put that aside for a second…)

∑
i=1,…,m

xij = 1 for every j = 1,…, m

xij ∈ {0,1} for every i, j

Our ILP formulation

Minimise max
j=1,…,m ∑

i=1,…,n

tijxij

subject to

(Let’s put that aside for a second…)

∑
i=1,…,m

xij = 1 for every j = 1,…, m

xij ∈ {0,1} for every i, j

call this T

Our ILP formulation

Minimise T

subject to ∑
i=1,…,m

xij = 1 for every j = 1,…, m

xij ∈ {0,1} for every i, j

Our ILP formulation

Minimise T

subject to ∑
i=1,…,m

xij = 1 for every j = 1,…, m

xij ∈ {0,1} for every i, j

What is the relationship between and for any ?∑
i=1,…,n

tijxij T j

Our ILP formulation

Minimise T

subject to ∑
i=1,…,m

xij = 1 for every j = 1,…, m

xij ∈ {0,1} for every i, j

 for any ∑
i=1,…,n

tijxij ≤ T j

Our ILP formulation

Minimise T

subject to ∑
i=1,…,m

xij = 1 for every j = 1,…, m

xij ∈ {0,1} for every i, j

 for any ∑
i=1,…,n

tijxij ≤ T j

The Travelling Salesman
Problem

The Travelling Salesman
Problem

A salesman needs to visit cities, denoted .n 0,1,…, n − 1

The Travelling Salesman
Problem

A salesman needs to visit cities, denoted .n 0,1,…, n − 1

He starts from city and would like to visit each city exactly
once.

0

The Travelling Salesman
Problem

A salesman needs to visit cities, denoted .n 0,1,…, n − 1

He starts from city and would like to visit each city exactly
once.

0

There is a known distance between any pair of cities . cij i, j

The Travelling Salesman
Problem

A salesman needs to visit cities, denoted .n 0,1,…, n − 1

He starts from city and would like to visit each city exactly
once.

0

There is a known distance between any pair of cities . cij i, j

The salesman would like to minimise the total distance
travelled.

The Travelling Salesman
Problem

The Travelling Salesman
Problem

A tour can be described as a sequence of cities
.0,s1, s2, …, sn−1

The Travelling Salesman
Problem

A tour can be described as a sequence of cities
.0,s1, s2, …, sn−1

The total number of possible tours is equal to the
permutation of elements, i.e., n − 1 (n − 1)!

The Travelling Salesman
Problem

A tour can be described as a sequence of cities
.0,s1, s2, …, sn−1

The total number of possible tours is equal to the
permutation of elements, i.e., n − 1 (n − 1)!

Enumeration is obviously too slow. We will use an ILP
formulation approach instead and rely on our clever solvers
to be faster than enumeration.

Step 1: Choosing the variables

Step 1: Choosing the variables

We already know: . cij

Step 1: Choosing the variables

We already know: . cij

One idea: Let if the tour visits city and 0 otherwise.xj = 1 j

Step 1: Choosing the variables

We already know: . cij

One idea: Let if the tour visits city and 0 otherwise.xj = 1 j

A better idea: Let if the tour visits city exactly after city
 and 0 otherwise.

xij = 1 i
j

Step 1: Choosing the variables

We already know: . cij

One idea: Let if the tour visits city and 0 otherwise.xj = 1 j

A better idea: Let if the tour visits city exactly after city
 and 0 otherwise.

xij = 1 i
j

Alternative interpretation: Think of the map as a fully connected
graph with a node for every city and an edge between every
two cities. Then if and only if the edge is being
used by the tour.

xij = 1 (i, j)

Step 2: Writing the objective
function

Relatively easy: We only pay the cost for those edges that
we used.

Step 2: Writing the objective
function

Relatively easy: We only pay the cost for those edges that
we used.

Minimise ∑
i∈V

∑
j∈V

cijxij

Step 2: Writing the objective
function

Step 3: Writing the constraints

This is more tricky.

Step 3: Writing the constraints

This is more tricky.

Let’s start with the easier ones.

Step 3: Writing the constraints

This is more tricky.

Let’s start with the easier ones.

Once the salesman enters a city, how many cities can he visit in the next step?

Step 3: Writing the constraints

This is more tricky.

Let’s start with the easier ones.

Once the salesman enters a city, how many cities can he visit in the next step?

Only one.

Step 3: Writing the constraints

This is more tricky.

Let’s start with the easier ones.

Once the salesman enters a city, how many cities can he visit in the next step?

Only one.

∑
j∈V

xij = 1, for i = 0,…, n − 1

Step 3: Writing the constraints

This is more tricky.

Let’s start with the easier ones.

Once the salesman enters a city, how many cities can he visit in the next step?

Only one.

∑
j∈V

xij = 1, for i = 0,…, n − 1

Once the salesman enters a city, from how many cities did he travel from?

Step 3: Writing the constraints

This is more tricky.

Let’s start with the easier ones.

Once the salesman enters a city, how many cities can he visit in the next step?

Only one.

∑
j∈V

xij = 1, for i = 0,…, n − 1

Once the salesman enters a city, from how many cities did he travel from?

Only one.

Step 3: Writing the constraints

This is more tricky.

Let’s start with the easier ones.

Once the salesman enters a city, how many cities can he visit in the next step?

Only one.

∑
j∈V

xij = 1, for i = 0,…, n − 1

Once the salesman enters a city, from how many cities did he travel from?

Only one.

∑
i∈V

xij = 1, for j = 0,…, n − 1

Step 3: Writing the constraints

Our developing ILP

∑
j∈V

xij = 1, for i = 0,…, n − 1

Minimise ∑
i∈V

∑
j∈V

cijxij

subject to

Our developing ILP

∑
j∈V

xij = 1, for i = 0,…, n − 1

Minimise ∑
i∈V

∑
j∈V

cijxij

subject to

∑
i∈V

xij = 1, for j = 0,…, n − 1

Step 3: Writing the constraints

Now to the more tricky ones.

Step 3: Writing the constraints

Now to the more tricky ones.

We need to make sure the cities are visited in a single tour,
not in multiple disjoint subtours.

Step 3: Writing the constraints

Now to the more tricky ones.

We need to make sure the cities are visited in a single tour,
not in multiple disjoint subtours.

New variables:

Step 3: Writing the constraints

Now to the more tricky ones.

We need to make sure the cities are visited in a single tour,
not in multiple disjoint subtours.

New variables:

Let be the number of the stop along the tour.ti

Step 3: Writing the constraints

Now to the more tricky ones.

We need to make sure the cities are visited in a single tour,
not in multiple disjoint subtours.

New variables:

Let be the number of the stop along the tour.ti

e.g. means that city 3 was visited 4th during the
tour.

t3 = 4

Step 3: Writing the constraints

Relation to previous variables

Let if the tour visits city exactly after city and 0
otherwise.

xij = 1 i j

Relation to previous variables

Let if the tour visits city exactly after city and 0
otherwise.

xij = 1 i j

So, when , we want .xij = 1 tj = ti + 1

Relation to previous variables

Let if the tour visits city exactly after city and 0
otherwise.

xij = 1 i j

So, when , we want .xij = 1 tj = ti + 1

But at the same time, when , we would like to not
impose any constraint on .

xij = 0 ti
tj

Relation to previous variables

Let if the tour visits city exactly after city and 0
otherwise.

xij = 1 i j

So, when , we want .xij = 1 tj = ti + 1

Relation to previous variables

Let if the tour visits city exactly after city and 0
otherwise.

xij = 1 i j

So, when , we want .xij = 1 tj = ti + 1

Let’s actually use instead.tj ≥ ti + 1

Relation to previous variables

Let if the tour visits city exactly after city and 0
otherwise.

xij = 1 i j

So, when , we want .xij = 1 tj = ti + 1

Let’s actually use instead.tj ≥ ti + 1

This ensures merely that the ordering of cities in the tour is
correct (is visited after). If all cities are visited in a single
tour, we are ok.

j i

Relation to previous variables

Let if the tour visits city exactly after city and 0
otherwise.

So, when , we want .

But at the same time, when , we would like to not
impose any constraint on .

xij = 1 i j

xij = 1 tj ≥ ti + 1

xij = 0 ti
tj

Relation to previous variables

The art of coming up with
constraints

What we want is the following:

The art of coming up with
constraints

What we want is the following:

 if tj ≥ ti + 1 xij = 1

The art of coming up with
constraints

What we want is the following:

 if tj ≥ ti + 1 xij = 1

Something at most as constraining as if tj ≥ 0 xij = 0

The art of coming up with
constraints

What we want is the following:

 if tj ≥ ti + 1 xij = 1

Something at most as constraining as if tj ≥ 0 xij = 0

 if ⇒ tj ≥ ti + 1 − n xij = 0

The art of coming up with
constraints

What we want is the following:

 if tj ≥ ti + 1 xij = 1

Something at most as constraining as if tj ≥ 0 xij = 0

 if ⇒ tj ≥ ti + 1 − n xij = 0

Putting them together: tj ≥ ti + 1 − n(1 − xij)

The art of coming up with
constraints

Our developing ILP

∑
j∈V

xij = 1, for i = 0,…, n − 1

Minimise ∑
i∈V

∑
j∈V

cijxij

subject to

Our developing ILP

∑
j∈V

xij = 1, for i = 0,…, n − 1

Minimise ∑
i∈V

∑
j∈V

cijxij

subject to

∑
i∈V

xij = 1, for j = 0,…, n − 1

Our developing ILP

∑
j∈V

xij = 1, for i = 0,…, n − 1

Minimise ∑
i∈V

∑
j∈V

cijxij

subject to

∑
i∈V

xij = 1, for j = 0,…, n − 1

tj ≥ ti + 1 − n(1 − xij) for i ≥ 0,j ≥ 1,i ≠ j

Our developing ILP

∑
j∈V

xij = 1, for i = 0,…, n − 1

Minimise ∑
i∈V

∑
j∈V

cijxij

subject to

∑
i∈V

xij = 1, for j = 0,…, n − 1

tj ≥ ti + 1 − n(1 − xij) for i ≥ 0,j ≥ 1,i ≠ j

t0 = 0

Our developing ILP

∑
j∈V

xij = 1, for i = 0,…, n − 1

Minimise ∑
i∈V

∑
j∈V

cijxij

subject to

∑
i∈V

xij = 1, for j = 0,…, n − 1

tj ≥ ti + 1 − n(1 − xij) for i ≥ 0,j ≥ 1,i ≠ j

t0 = 0
xij ∈ {0,1} for i, j ∈ V

Our developing ILP

∑
j∈V

xij = 1, for i = 0,…, n − 1

Minimise ∑
i∈V

∑
j∈V

cijxij

subject to

∑
i∈V

xij = 1, for j = 0,…, n − 1

tj ≥ ti + 1 − n(1 − xij) for i ≥ 0,j ≥ 1,i ≠ j

t0 = 0
xij ∈ {0,1} for i, j ∈ V

ti ∈ {0,1,…, n − 1} for i ∈ V

Let if the tour visits city exactly after city and 0
otherwise.

So, when , we want .

Let’s actually use instead.

This ensures merely that the ordering of cities in the tour is
correct (is visited after). If all cities are visited in a single
tour, we are ok.

xij = 1 i j

xij = 1 tj = ti + 1

tj ≥ ti + 1

j i

Relation to previous variables

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city ,
and let be the number of cities visited by this subtour.

Consider the constraint and sum both
sides for all the cities in the subtour.

0
r

tj ≥ ti + 1 − n(1 − xij)
j

No subtours

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city ,
and let be the number of cities visited by this subtour.

Consider the constraint and sum both
sides for all the cities in the subtour.

0
r

tj ≥ ti + 1 − n(1 − xij)
j

No subtours

ti
tj tℓ

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city ,
and let be the number of cities visited by this subtour.

Consider the constraint and sum both
sides for all the cities in the subtour.

0
r

tj ≥ ti + 1 − n(1 − xij)
j

No subtours

ti
tj
+

tℓ

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city ,
and let be the number of cities visited by this subtour.

Consider the constraint and sum both
sides for all the cities in the subtour.

0
r

tj ≥ ti + 1 − n(1 − xij)
j

No subtours

ti
tj
+

tℓ

-

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city ,
and let be the number of cities visited by this subtour.

Consider the constraint and sum both
sides for all the cities in the subtour.

0
r

tj ≥ ti + 1 − n(1 − xij)
j

No subtours

ti
tj
+

tℓ

-
+

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city ,
and let be the number of cities visited by this subtour.

Consider the constraint and sum both
sides for all the cities in the subtour.

0
r

tj ≥ ti + 1 − n(1 − xij)
j

No subtours

ti
tj
+

tℓ

-
+

-

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city ,
and let be the number of cities visited by this subtour.

Consider the constraint and sum both
sides for all the cities in the subtour.

0
r

tj ≥ ti + 1 − n(1 − xij)
j

No subtours

ti
tj
+

tℓ

-
+

-+

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city ,
and let be the number of cities visited by this subtour.

Consider the constraint and sum both
sides for all the cities in the subtour.

0
r

tj ≥ ti + 1 − n(1 − xij)
j

No subtours

ti
tj
+

tℓ

-
+

-+ -

Assume that we instead have two disjoint subtours.

Consider one of these subtours that does not include city ,
and let be the number of cities visited by this subtour.

Consider the constraint and sum both
sides for all the cities in the subtour.

0
r

tj ≥ ti + 1 − n(1 − xij)
j

No subtours

ti
tj
+

tℓ

-
+

-+ -

LHS =  
RHS =
contradiction

X
X + r

