Algorithms and Data Structures

Introduction to Dynamic Programming and Chain Matrix
Multiplication



Dynamic Programming

An technique for solving optimisation problems.
Term attributed to Bellman (1950s).

“Programming” as in “Planning” or “Optimising”.



Dynamic Programming

The paradigm of dynamic programming:

Given a problem P, define a sequence of subproblems, with the following
properties:

The subproblems are ordered from the smallest to the largest.
The largest problem is our original problem P.

The optimal solution of a subproblem can be constructed from the optimal
solutions of sub-sub-problems. (Optimal Substructure).

Solve the subproblems from the smallest to the largest. When you solve a
subproblem, store the solution (e.g., in an array) and use it to solve the
larger subproblems.



Matrix Chain Multiplication

We have a sequence (chain) (A, A,, ..., A, ) of n matrices (not necessarily
square) to be multiplied.

The goal is to compute the product A, - A, - ... - A

nl

For that we will use the standard algorithm for matrix multiplication:

RECTANGULAR-MATRIX-MULTIPLY (4, B,C, p,q,r)

1 fori =1top

2 for j =1tor

3 fork = 1tog

4 Cij = Cij + Qix - by

The running time is the number of scalar multiplications, i.e., pgr.



Matrix Chain Multiplication

We have a sequence (chain) (A, A,, ..., A, ) of n matrices (not necessarily square)
to be multiplied.

The goal is to compute the product A; - A, - ... - A

nl

The order of multiplication matters!

Consider (A, A,, A;) with dimensions 10 x 100, 100 x 5, and 5 x 50.

If we do ((A; - A,) - A3) we have 10 - 100 - 5 = 5000 scalar multiplications +
10 -5 50 = 2500 scalar multiplications for a total of 7500.

If instead we do (A, - (A, - A3)) we have 100 - 5 - 50 = 25000 scalar

multiplications + 10 - 100 - 50 = 50000 scalar multiplications for a total of
75000.



Full Parenthesisation

A product of matrices is fully parenthesised if it is either a single matrix, or a
product of two fully parenthesised matrix products, surrounded by
parenthesis.

Matrix Chain Multiplication problem: Given a chain (A, A, ..., A ) of n
matrices where for i = 1,2,..., n, matrix A, has dimension p,_; X p,, find a

full parenthesisation of the product A, - A, - ... - A, that minimises the
number of scalar multiplications.

We can think of the input as a sequence of dimensions (py, Pi, Ps ---» P,,)-



A first attempt: brute force

Can we perhaps try every parenthesisation possible?

For n = 1, we only have one matrix, so only one parenthesisation.

For n > 2, a fully parenthesised product is the product of two fully parenthesised
matrix sub-products.

The split between those sub products happens between the k-th and the
(k + 1)-th matrices, foranyk =1,...,n — 1

The running time is

P(n) = 1 |f n=1 This recurrence relation evaluates to €2(2")

P(n) = Z P()P(n —k),ifn > 2
k=1



Dynamic Programming

Notation: Let A,.,,

the product A; - A,y - ... - A;

where 1 < J, denote the matrix that results from evaluating

If 1 = J, then the parenthesisation problem for this product is trivial, as we
only have one matrix.

If i < j, then there is some k € [i, j) such that the product is split between
Arand A, .

In other words, there is a k for which the product Al-:j can be written as the

product of A, and A; ;..



Optimal Substructure

In other words, there is a k for which the product Ai:j can be written as the

product of A, and A; ..

Consider the way to parenthesise the “prefix” A; - ... - A,.

Within the optimal parenthesisation of A, - ... - Aj there must be an optimal

parenthesisation of A, - ... - A,.

If not, there is a cheaper parenthesisation of A; - ... - A,. We can use that one
in the optimal parenthesisation of A; - ... -Aj instead to obtain an overall
lower cost, a contradiction.

Similarly for the the way to parenthesise the “suffix” A, ; - ... - Aj.



Optimal Substructure

For any i < J, the optimal parenthesisation of A - ... -Aj splits the product

intoA; - ... - Ayand A, - ... - A;, and computes optimal parenthesisations
for the two subproducts.

Al.Al-l—l *ees ’

We must consider all the possible splits, i.e., choices of k.



Defining a recursion

“The optimal parenthesisation chooses a split point and the computes optimal
parenthesisations for the subproblems on the left and on the right.”

Sounds like recursion!

Let M|1, j| denote the minimum cost (the minimum number of scalar
multiplications) required to compute the matrix Ai:j.

What is the minimum cost of our problem?

M]1.,n].



Defining a recursion

Let M|, j| denote the minimum cost (the minimum number of scalar
multiplications) required to compute the matrix Ai:j.

What is the minimum cost of our problem?
M]1,n].

What is M|i,i| foranyi = 1,2,...,n?
If 1 = J, we have one matrix, so 0 cost.

Mli,i] =0foralli=1,2,....n



Defining a recursion

Now consider the case where i < .

Consider the optimal parenthesisation of A, - ... -A]- splits the productinto A, - ... - A, and

Ak+1 S e .A]

Then M|, j| consists of

the optimal cost of A; - ... - A,
i.e., M[i, k]

and the optimal cost of Ay, | - ... - A,
i.e., M[k+1,j]

and the cost of multiplying A, and Az, ;.

.e., Di_1PrP;



Defining a recursion

We have the following relation:

e 0, ifi=]j,
L1 = mingg; , {MIi, k1 + M{k + 1j] + pipep;} i <.

Notice: M|1, j| gives us the optimal costs, but not the optimal splits. To find
the optimal splits, we define S[i, j] to be the value k such that
MLi, j] = M[i, k] + Mk + 1,j] + p,_,p,p;



Computing a solution

We have the following relation:

0, ifi=y,

Mli,j] = . . . L
[£.]] mingc; A({Mli, k] + Mk + 1,71+ p,_ppp;} i <.

We could now define a recursive algorithm straightforwardly using this.

RECURSIVE-MATRIX-CHAIN(p, i, j)

1 ifi==j

2 return 0

3 mli,j] = o0

4 fork =itoj —1

5 q = RECURSIVE-MATRIX-CHAIN(p,i,k)
+ RECURSIVE-MATRIX-CHAIN(p,k + 1, j)
+ Pi-1Dk Dj

ifg <mli, j]

mli, j] = q

return m|i, j|

~N O

o0



Running time?

The running time is given by the following recurrence relation:

1, ifn=1 This recurrence relation evaluates to €2(2")

I(n) 2 1+ZZ;(T(")+T(”_IC)+1) ifn > 1.

We could now define a recursive algorithm straightforwardly using this.

RECURSIVE-MATRIX-CHAIN(p, i, j)

1 ifi==j

2 return 0

3 mli,j] = o0

4 fork =itoj—1

5 q = RECURSIVE-MATRIX-CHAIN (p,i,k)
+ RECURSIVE-MATRIX-CHAIN(p,k + 1, j)
+ Pi-1Dk Dj

ifg <mli, j]

mli,j] = q

return m|i, j|

o0 3 AN



Computing the subproblems

M[1,4]

MI1,2]

MI1,3]

M[1,1] M[2,4]

v

M][1,2] M][3,4]

M][1,3] M[4,4]

v

MI1,1] M][2,2]

v

MI1,1] M][2,3]

M][1,2] M][3,3]

Do you observe something?

How many distinct subproblems of the
problem from i to j are there?

As many as the choice of 7, j that satisfy

L. . n 2
1<i1<j<mn,ie, , +n = O(n°)

The key is to store the calculation of
the subproblems and reuse it.



A Dynamic Programming
algorithm

To compute M|1, j|, we need the values of M|i, k| and M[k + 1,j] for all
1 < k<.

So we will have to compute those first.

We work in a bottom-up manner.



A Dynamic Programming
algorithm

MATRIX-CHAIN-ORDER (p, n)

1 letm[l:n,1:n]and s[l1:n — 1,2:n] be new tables

2 fori =1ton // chain length 1

3 mli,i] =0

4 forl = 2ton // [ is the chain length
5 fori = 1ton—1[+1 // chain begins at A;
6 J =i+l // chain ends at A;

7 mli, j] = o0

8 fork =itoj—1 /] try Ajx Ags1:;

9 q = m[l’k]_l_m[k_l_ l’j]+pi—1pkpj

10 if g <mli, j]

11 mli, j] = q // remember this cost
12 sli,j] =k // remember this index

13 return m and s



: 30 X 35

35 %15

15 %5

5% 10

: 10 x 20

- 20X 25

Example



A Dynamic Programming
algorithm

MATRIX-CHAIN-ORDER (p, n)

1 letm[l:n,1:n]and s[l1:n — 1,2:n] be new tables

2 fori =1ton // chain length 1

3 mli,i] = 0 } chains of length 1

4 forl = 2ton // [ is the chain length
5 fori = 1ton—1[+1 // chain begins at A;

6 J =i+l // chain ends at A;

7 mli, j] = o0

8 fork =itoj—1 /] try Ajx Ags1:;

9 q = m[l’k]_l_m[k_l_ l’j]+pi—1pkpj

10 if g <mli, j]

11 mli, j] = q // remember this cost

12 sli,j] =k // remember this index

13 return m and s



The table VI




A Dynamic Programming
algorithm

MATRIX-CHAIN-ORDER (p, n)

1 letm[l:n,1:n]and s[l1:n — 1,2:n] be new tables

2 fori =1ton // chain length 1

3 mli,i] = 0 } chains of length 1

4 forl/ = 2ton chainsoflength2  // [ is the chain length

5 fori = 1ton—1[1+1 // chain begins at A; i =1

6 j=i+1l-1 // chain ends at A; =2

7 mli, j] = o0 We are now computing M[1,2]

8 fork =itoj—1 /] try Ajx Ags1:; k=1

9 q = mli, k] +mlk + 1,71+ picibepi  py1,17+ M[2.2] + pypips
10 if g <mli, j] 0 0
11 mli, j] = q // remember this cost

12 sli,j] =k // remember this index

13 return m and s



: 30 X 35

35 %15

15 %5

5% 10

: 10 x 20

- 20X 25

Example

PoP1P> = 30-35-15 = 15750



The table VI




A Dynamic Programming
algorithm

MATRIX-CHAIN-ORDER (p, n)

1 letm[l:n,1:n]and s[1:n —1,2:n] be new tables this goes up to 5

2 fori =1ton // chain lengt
3 mli,i] =0 } chains of length 1

4 for! = 2ton chains of length 2

is the chain length

5 fori = 1ton—1[1+1 // chain begins at A; 1 =2
6 J=i+1l-1 // chain ends at A; j=3
7 mli, j] = oo We are now computing M|[2,3]
8 fork =itoj—1 /] try Ajx Ags1:; k=2
9

q = mli,k]l +mlk +1,j]1+ pi-1Dep;  M[2,2] + M[3,3] + p,pops
10 if g <mli, j]

11 mli, j] = q // remember this cost

12 sli,j] =k // remember this index

13 return m and s



: 30 X 35

35 %15

15 %5

5% 10

: 10 x 20

- 20X 25

Example

PPz =35-15-5=12625



The table VI

0O 15750

0 2625




The table VI

0O 15750

0 2625

0 750

0 1000

0 5000




A Dynamic Programming
algorithm

MATRIX-CHAIN-ORDER (p, n)

1 letm[l:n,1:n]and s[l1:n — 1,2:n] be new tables

2 fori =1ton // chain length 1

3 mli,i] = 0 } chains of length 1

4 forl/ = 2ton chainsoflength3  // [ is the chain length

5 fori = 1ton—1[1+1 // chain begins at A; 1= 1
6 j=i+1l-1 // chain ends at A; j=73
7 mli, j] = o0 We are now computing M[1,3]
8 fork =itoj—1 /] try Ajx Ags1:;

9 q = m[l’k] +m[k+ 1’]] +pi—1pkpj

10 if g <mli, j]

11 mli, j] = q // remember this cost

12 sli,j] =k // remember this index

13 return m and s

k=1 M[1,1]1 4+ M[2,3] + pypp; = 0 + 2625+5250 = 7875
k=2 M[1,2] + M[3,3] + poprpz = 15750 + 042250 = 18000



The table VI

0O 15750 7875

0 2625

0 750

0 1000

0 5000




The table VI

0 15750 7875 9375

0 2625 4375

0 750 2500

0 1000 3500

0 5000




A Dynamic Programming
algorithm

MATRIX-CHAIN-ORDER (p, n)

1 letm[l:n,1:n]and s[l1:n — 1,2:n] be new tables

2 fori = 1ton // chain length 1

3 mli,i] = 0 } chains of length 1

4 forl/ = 2ton chainsoflength4  // [ is the chain length

5 fori = 1ton—1+1 // chain begins at A; 1 =2
6 j=i+1l-1 // chain ends at A; j=5
7 mli, j] = o0 We are now computing M[2,5]
8 fork =itoj—1 /] try Ajx Ags1:;

9 q = m[l’k] —I_m[k—l_ 1’]] +Pi—1PkPj

10 if g <mli, j]

11 mli, j] = q // remember this cost

12 sli,j] =k // remember this index

13 return m and s

k=2 M[2.2]+ M[3,5]+ p,pops = 0 + 2500+35 - 15 - 20 = 13000
k=3 M[23]+M[4,5] + p;psps = 2625 + 1000435 - 5 - 20 = 7125
k=4 M[24] + M[5,5] + p,p,ps = 4375 + 0+35 - 10 - 20 = 11375



The table VI

0 15750 7875 9375

0 2625 4375 7125

0 750 2500

0 1000 3500

0 5000




The table VI

} optimal cost

0 15750 7875 9375 11875
0 2625 4375 7125 10500

0 750 2500 5375

0 1000 3500

0 5000




Computing the optimal
solution

MATRIX-CHAIN-ORDER (p, n)

1 letm[l:n,1:n]and s[l1:n — 1,2:n] be new tables

2 fori = 1ton // chain length 1
3 mli,i] = 0 } chains of length 1
4 forl/ = 2ton chainsoflength4  // [ is the chain length
5 fori = 1ton—1+1 // chain begins at A; 1 =2
6 j=i+1-1 // chain ends at A; j=5
7 mli, j] = o0 We are now computing M[2,5]
8 fork =itoj —1 /] try Ajx Ags1:;
9 q = m[l’k] +m[k+ 1’.]] +Pi—1PkPj
10 if g <mli, j]

e // remember this cost

b
13 returnm and s

// remember this index  S[2,5] =2
k=2 M[2.2] + M[3,5] + p;p,ps = 0 + 2500435 - 15 - 20 = 13000
| Y M[2,3]4 M[4,5] + p,pips = 2625 + 1000435 - 5 - 20 = 7125 optimal split
k=14 M[2,4] + M[5,5] + p,psps = 4375 + 0435 - 10 - 20 = 11375




Az =(Ar) - (Ays)

The table S

4 5 6

3 3 A = (Ay3) - (Age)
A1:6 — (Alzl ) (A2:3)) ) ((A4:5) ) A6:6)

3 3 3

3 3 3

Age = (Ags) - (Agp)

Ags = (Aga) - (Ass)

Aeg = (A1 - (Agp - Aszz)) - ((Agg - Asis) - Age) = (A - (A - Az)) - (Ag - As) - Ag)



Computing a solution

We have the following relation:

0, ifi=y,

Mli,j] = . . . L
[£.]] mingc; A({Mli, k] + Mk + 1,71+ p,_ppp;} i <.

We could now define a recursive algorithm straightforwardly using this.

RECURSIVE-MATRIX-CHAIN(p, i, j)

1 ifi==j

2 return 0

3 mli,j] = o0

4 fork =itoj —1

5 q = RECURSIVE-MATRIX-CHAIN(p,i,k)
+ RECURSIVE-MATRIX-CHAIN(p,k + 1, j)
+ Pi-1Dk Dj

ifg <mli, j]

mli, j] = q

return m|i, j|

~N O

o0



Memoization

We write the procedure recursively in a natural manner, but we modify it to
save the result of each subproblem in a table.

The procedure first checks if we have computed the solution already in our
table.

If we have, it uses it without calling itself recursively.

If we have not, then it recurses to compute it.



A Dynamic Programming
algorithm (top-down)

MEMOIZED-MATRIX-CHAIN (p, n)

1 letm[l:n,1:n]be anew table

2 fori =1ton

3 for j =iton

4 mli, j] = o0

5 return LOOKUP-CHAIN(m, p,1,n)

LOOKUP-CHAIN(m, p, i, j)
if mli, j] < o0
return m|i, j|
ifi ==

1

) } Already computed? Return it!

3

4 mli, j] = 0 If the length of the problem is 1, 0 cost
5

6

elsefork =itoj —1
q = LOOKUP-CHAIN(m, p, i, k) Use recursion to
+ LOOKUP-CHAIN(m, p,k +1,j) + pi—1pkD; compute ¢
ifg <mli, j]
mli,j] = q
9 return mi, j|

oo



Dynamic Programming vs
Divide and Conquer

DP is an optimisation technique
and is only applicable to problems
with optimal substructure.

DP splits the problem into parts,
finds solutions to the parts and
joins them.

The parts are not significantly
smaller and are overlapping.

In DP, the subproblem dependency
can be represented by a DAG.

DQ is not normally used for
optimisation problems.

DQ splits the problem into parts,
finds solutions to the parts and
joins them.

The parts are significantly
smaller and do not normally

overlap.

In DQ, the subproblem
dependency can be represented

by a tree.



