
Algorithms and Data Structures
Introduction to Dynamic Programming and Chain Matrix 

Multiplication



Dynamic Programming

An technique for solving optimisation problems.


Term attributed to Bellman (1950s).


“Programming” as in “Planning” or “Optimising”.



Dynamic Programming
The paradigm of dynamic programming:


Given a problem P, define a sequence of subproblems, with the following 
properties:


The subproblems are ordered from the smallest to the largest.


The largest problem is our original problem P.


The optimal solution of a subproblem can be constructed from the optimal 
solutions of sub-sub-problems. (Optimal Substructure).


Solve the subproblems from the smallest to the largest. When you solve a 
subproblem, store the solution (e.g., in an array) and use it to solve the 
larger subproblems.



Matrix Chain Multiplication
We have a sequence (chain)  of  matrices (not necessarily 
square) to be multiplied. 


The goal is to compute the product . 


For that we will use the standard algorithm for matrix multiplication:




The running time is the number of scalar multiplications, i.e., .

⟨A1, A2, …, An⟩ n

A1 ⋅ A2 ⋅ … ⋅ An

pqr



Matrix Chain Multiplication
We have a sequence (chain)  of  matrices (not necessarily square) 
to be multiplied. 


The goal is to compute the product . 


The order of multiplication matters!


Consider  with dimensions , , and .


If we do  we have  scalar multiplications + 
 scalar multiplications for a total of .


If instead we do  we have  scalar 
multiplications +  scalar multiplications for a total of 

.

⟨A1, A2, …, An⟩ n

A1 ⋅ A2 ⋅ … ⋅ An

⟨A1, A2, A3⟩ 10 × 100 100 × 5 5 × 50

((A1 ⋅ A2) ⋅ A3) 10 ⋅ 100 ⋅ 5 = 5000
10 ⋅ 5 ⋅ 50 = 2500 7500

(A1 ⋅ (A2 ⋅ A3)) 100 ⋅ 5 ⋅ 50 = 25000
10 ⋅ 100 ⋅ 50 = 50000

75000



Full Parenthesisation

A product of matrices is fully parenthesised if it is either a single matrix, or a 
product of two fully parenthesised matrix products, surrounded by 
parenthesis.


Matrix Chain Multiplication problem: Given a chain  of  
matrices where for , matrix  has dimension , find a 
full parenthesisation of the product  that minimises the 
number of scalar multiplications. 


We can think of the input as a sequence of dimensions .

⟨A1, A2, …, An⟩ n
i = 1,2,…, n Ai pi−1 × pi

A1 ⋅ A2 ⋅ … ⋅ An

⟨p0, p1, p2, …, pn⟩



A first attempt: brute force
Can we perhaps try every parenthesisation possible?


For , we only have one matrix, so only one parenthesisation.


For , a fully parenthesised product is the product of two fully parenthesised 
matrix sub-products.


The split between those sub products happens between the -th and the  
-th matrices, for any 


The running time is  
 

, if  

, if 

n = 1

n ≥ 2

k
(k + 1) k = 1,…, n − 1

P(n) = 1 n = 1

P(n) =
n−1

∑
k=1

P(k)P(n − k) n ≥ 2

This recurrence relation evaluates to Ω(2n)



Dynamic Programming
Notation: Let , where , denote the matrix that results from evaluating 
the product .


If , then the parenthesisation problem for this product is trivial, as we 
only have one matrix.


If , then there is some  such that the product is split between 
 and .


In other words, there is a  for which the product  can be written as the 
product of  and .

Ai:j i ≤ j
Ai ⋅ Ai+1 ⋅ … ⋅ Aj

i = j

i < j k ∈ [i, j)
Ak Ak+1

k Ai:j
Ai:k Ak+1:j



Optimal Substructure
In other words, there is a  for which the product  can be written as the 
product of  and .


Consider the way to parenthesise the “prefix” .


Within the optimal parenthesisation of  there must be an optimal 
parenthesisation of .


If not, there is a cheaper parenthesisation of . We can use that one 
in the optimal parenthesisation of  instead to obtain an overall 
lower cost, a contradiction. 


Similarly for the the way to parenthesise the “suffix” .

k Ai:j
Ai:k Ak+1:j

Ai ⋅ … ⋅ Ak

Ai ⋅ … ⋅ Aj
Ai ⋅ … ⋅ Ak

Ai ⋅ … ⋅ Ak
Ai ⋅ … ⋅ Aj

Ak+1 ⋅ … ⋅ Aj



Optimal Substructure
For any , the optimal parenthesisation of  splits the product 
into  and , and computes optimal parenthesisations 
for the two subproducts.

i < j Ai ⋅ … ⋅ Aj
Ai ⋅ … ⋅ Ak Ak+1 ⋅ … ⋅ Aj

Ai ⋅ Ai+1 ⋅ … ⋅ Aℓ−1, Aℓ, Aℓ+1… ⋅ Aj−1 ⋅ Aj

We must consider all the possible splits, i.e., choices of .k



Defining a recursion

“The optimal parenthesisation chooses a split point and the computes optimal 
parenthesisations for the subproblems on the left and on the right.” 

Sounds like recursion!


Let  denote the minimum cost (the minimum number of scalar 
multiplications) required to compute the matrix .


What is the minimum cost of our problem?


.

M[i, j]
Ai:j

M[1,n]



Defining a recursion

Let  denote the minimum cost (the minimum number of scalar 
multiplications) required to compute the matrix .


What is the minimum cost of our problem?


.


What is  for any ? 


If , we have one matrix, so 0 cost. 


  for all 

M[i, j]
Ai:j

M[1,n]

M[i, i] i = 1,2,…, n

i = j

M[i, i] = 0 i = 1,2,…, n



Defining a recursion
Now consider the case where . 


Consider the optimal parenthesisation of  splits the product into  and 
.


Then  consists of 


the optimal cost of 


i.e., 


and the optimal cost of 


i.e., 


and the cost of multiplying  and 


i.e., 

i < j

Ai ⋅ … ⋅ Aj Ai ⋅ … ⋅ Ak
Ak+1 ⋅ … ⋅ Aj

M[i, j]

Ai ⋅ … ⋅ Ak

M[i, k]

Ak+1 ⋅ … ⋅ Aj

M[k + 1,j]

Ai:k Ak+1:j

pi−1pk pj



Defining a recursion

We have the following relation:


 


Notice:  gives us the optimal costs, but not the optimal splits. To find 
the optimal splits, we define  to be the value  such that 

.

M[i, j] = {
0,  if i = j,
mink∈[i,j){M[i, k] + M[k + 1,j] + pi−1pk pj}  if i < j .

M[i, j]
S[i, j] k

M[i, j] = M[i, k] + M[k + 1,j] + pi−1pk pj



Computing a solution
We have the following relation:


 


We could now define a recursive algorithm straightforwardly using this.  




M[i, j] = {
0,  if i = j,
mink∈[i,j){M[i, k] + M[k + 1,j] + pi−1pk pj}  if i < j .



Running time?
The running time is given by the following recurrence relation:


 


We could now define a recursive algorithm straightforwardly using this.  




T(n) ≥ {
1,  if n = 1,
1 + ∑n−1

k=1 (T(k) + T(n − k) + 1)  if n > 1.

This recurrence relation evaluates to Ω(2n)



Computing the subproblems

M[1,4]

M[1,1] M[2,4]

M[1,2] M[3,4]

M[1,3] M[4,4]

M[1,2] M[1,1] M[2,2]

M[1,3]

M[1,1] M[2,3]

M[1,2] M[3,3]

Do you observe something?

How many distinct subproblems of the 
problem from  to  are there?i j

As many as the choice of  that satisfy 

, i.e., 

i, j

i ≤ i ≤ j ≤ n (n
2)+n = Θ(n2)

The key is to store the calculation of 
the subproblems and reuse it.



A Dynamic Programming 
algorithm

To compute , we need the values of  and  for all 
.


So we will have to compute those first.


We work in a bottom-up manner. 

M[i, j] M[i, k] M[k + 1,j]
i ≤ k ≤ j



A Dynamic Programming 
algorithm



Example















A1 : 30 × 35

A2 : 35 × 15

A3 : 15 × 5

A4 : 5 × 10

A5 : 10 × 20

A6 : 20 × 25



A Dynamic Programming 
algorithm

⏞

chains of length 1



The table M
0

0

0

0

0

0



A Dynamic Programming 
algorithm

⏞

chains of length 1

chains of length 2
i = 1
j = 2

We are now computing M[1,2]
k = 1

M[1,1] + M[2,2] + p0p1p2
0 0



Example















A1 : 30 × 35

A2 : 35 × 15

A3 : 15 × 5

A4 : 5 × 10

A5 : 10 × 20

A6 : 20 × 25

p0p1p2 = 30 ⋅ 35 ⋅ 15 = 15750



The table M
0 15750

0

0

0

0

0



A Dynamic Programming 
algorithm

⏞

chains of length 1

chains of length 2
i = 2

this goes up to 5

j = 3
We are now computing M[2,3]

k = 2
M[2,2] + M[3,3] + p1p2p3



Example















A1 : 30 × 35

A2 : 35 × 15

A3 : 15 × 5

A4 : 5 × 10

A5 : 10 × 20

A6 : 20 × 25

p1p2p3 = 35 ⋅ 15 ⋅ 5 = 2625



The table M
0 15750

0 2625

0

0

0

0



The table M
0 15750

0 2625

0 750

0 1000

0 5000

0



A Dynamic Programming 
algorithm

⏞

chains of length 1

chains of length 3
i = 1
j = 3

We are now computing M[1,3]

k = 1   M[1,1] + M[2,3] + p0p1p3 = 0 + 2625+5250 = 7875
k = 2   M[1,2] + M[3,3] + p0p2p3 = 15750 + 0+2250 = 18000



The table M
0 15750 7875

0 2625

0 750

0 1000

0 5000

0



The table M
0 15750 7875 9375

0 2625 4375

0 750 2500

0 1000 3500

0 5000

0



A Dynamic Programming 
algorithm

⏞

chains of length 1

chains of length 4
i = 2
j = 5

We are now computing M[2,5]

k = 2   M[2,2] + M[3,5] + p1p2p5 = 0 + 2500+35 ⋅ 15 ⋅ 20 = 13000
k = 3   M[2,3] + M[4,5] + p1p3p5 = 2625 + 1000+35 ⋅ 5 ⋅ 20 = 7125
k = 4   M[2,4] + M[5,5] + p1p4p5 = 4375 + 0+35 ⋅ 10 ⋅ 20 = 11375



The table M
0 15750 7875 9375

0 2625 4375 7125

0 750 2500

0 1000 3500

0 5000

0



The table M
0 15750 7875 9375 11875 15125

0 2625 4375 7125 10500

0 750 2500 5375

0 1000 3500

0 5000

0

optimal cost



Computing the optimal 
solution

⏞

chains of length 1

chains of length 4
i = 2
j = 5

We are now computing M[2,5]

k = 2   M[2,2] + M[3,5] + p1p2p5 = 0 + 2500+35 ⋅ 15 ⋅ 20 = 13000
k = 3   M[2,3] + M[4,5] + p1p3p5 = 2625 + 1000+35 ⋅ 5 ⋅ 20 = 7125
k = 4   M[2,4] + M[5,5] + p1p4p5 = 4375 + 0+35 ⋅ 10 ⋅ 20 = 11375

optimal split

S[2,5] = 2



The table S
1 1 3 3 3

2 3 3 3

3 3 3

4 5

5

1

2

3

4

5

2 3 4 5 6

A1:6 = (A1:3) ⋅ (A4:6)

A1:3 = (A1:1) ⋅ (A2:3)

A4:6 = (A4:5) ⋅ (A6:6)

A1:6 = (A1:1 ⋅ (A2:3)) ⋅ ((A4:5) ⋅ A6:6)

A2:3 = (A2:2) ⋅ (A3:3)

A4:5 = (A4:4) ⋅ (A5:5)

A1:6 = (A1:1 ⋅ (A2:2 ⋅ A3:3)) ⋅ ((A4:4 ⋅ A5:5) ⋅ A6:6) = (A1 ⋅ (A2 ⋅ A3)) ⋅ ((A4 ⋅ A5) ⋅ A6)



Computing a solution
We have the following relation:


 


We could now define a recursive algorithm straightforwardly using this.  




M[i, j] = {
0,  if i = j,
mink∈[i,j){M[i, k] + M[k + 1,j] + pi−1pk pj}  if i < j .



Memoization 

We write the procedure recursively in a natural manner, but we modify it to 
save the result of each subproblem in a table. 


The procedure first checks if we have computed the solution already in our 
table.


If we have, it uses it without calling itself recursively.


If we have not, then it recurses to compute it.



A Dynamic Programming 
algorithm (top-down)

⏞

Already computed? Return it!⏞

If the length of the problem is 1, 0 cost⏞

Use recursion to 
compute q



Dynamic Programming vs 
Divide and Conquer

DP is an optimisation technique 
and is only applicable to problems 
with optimal substructure.


DP splits the problem into parts, 
finds solutions to the parts and 
joins them.


The parts are not significantly 
smaller and are overlapping.


In DP, the subproblem dependency 
can be represented by a DAG.

DQ is not normally used for 
optimisation problems.


DQ splits the problem into parts, 
finds solutions to the parts and 
joins them.


The parts are significantly 
smaller and do not normally 
overlap.


In DQ, the subproblem 
dependency can be represented 
by a tree.


