
Algorithms and Data Structures
Introduction to Dynamic Programming and Chain Matrix

Multiplication

Dynamic Programming

An technique for solving optimisation problems.

Term attributed to Bellman (1950s).

“Programming” as in “Planning” or “Optimising”.

Dynamic Programming
The paradigm of dynamic programming:

Given a problem P, define a sequence of subproblems, with the following
properties:

The subproblems are ordered from the smallest to the largest.

The largest problem is our original problem P.

The optimal solution of a subproblem can be constructed from the optimal
solutions of sub-sub-problems. (Optimal Substructure).

Solve the subproblems from the smallest to the largest. When you solve a
subproblem, store the solution (e.g., in an array) and use it to solve the
larger subproblems.

Matrix Chain Multiplication
We have a sequence (chain) of matrices (not necessarily
square) to be multiplied.

The goal is to compute the product .

For that we will use the standard algorithm for matrix multiplication:

The running time is the number of scalar multiplications, i.e., .

⟨A1, A2, …, An⟩ n

A1 ⋅ A2 ⋅ … ⋅ An

pqr

Matrix Chain Multiplication
We have a sequence (chain) of matrices (not necessarily square)
to be multiplied.

The goal is to compute the product .

The order of multiplication matters!

Consider with dimensions , , and .

If we do we have scalar multiplications +
 scalar multiplications for a total of .

If instead we do we have scalar
multiplications + scalar multiplications for a total of

.

⟨A1, A2, …, An⟩ n

A1 ⋅ A2 ⋅ … ⋅ An

⟨A1, A2, A3⟩ 10 × 100 100 × 5 5 × 50

((A1 ⋅ A2) ⋅ A3) 10 ⋅ 100 ⋅ 5 = 5000
10 ⋅ 5 ⋅ 50 = 2500 7500

(A1 ⋅ (A2 ⋅ A3)) 100 ⋅ 5 ⋅ 50 = 25000
10 ⋅ 100 ⋅ 50 = 50000

75000

Full Parenthesisation

A product of matrices is fully parenthesised if it is either a single matrix, or a
product of two fully parenthesised matrix products, surrounded by
parenthesis.

Matrix Chain Multiplication problem: Given a chain of
matrices where for , matrix has dimension , find a
full parenthesisation of the product that minimises the
number of scalar multiplications.

We can think of the input as a sequence of dimensions .

⟨A1, A2, …, An⟩ n
i = 1,2,…, n Ai pi−1 × pi

A1 ⋅ A2 ⋅ … ⋅ An

⟨p0, p1, p2, …, pn⟩

A first attempt: brute force
Can we perhaps try every parenthesisation possible?

For , we only have one matrix, so only one parenthesisation.

For , a fully parenthesised product is the product of two fully parenthesised
matrix sub-products.

The split between those sub products happens between the -th and the  
-th matrices, for any

The running time is  
 

, if  

, if

n = 1

n ≥ 2

k
(k + 1) k = 1,…, n − 1

P(n) = 1 n = 1

P(n) =
n−1

∑
k=1

P(k)P(n − k) n ≥ 2

This recurrence relation evaluates to Ω(2n)

Dynamic Programming
Notation: Let , where , denote the matrix that results from evaluating
the product .

If , then the parenthesisation problem for this product is trivial, as we
only have one matrix.

If , then there is some such that the product is split between
 and .

In other words, there is a for which the product can be written as the
product of and .

Ai:j i ≤ j
Ai ⋅ Ai+1 ⋅ … ⋅ Aj

i = j

i < j k ∈ [i, j)
Ak Ak+1

k Ai:j
Ai:k Ak+1:j

Optimal Substructure
In other words, there is a for which the product can be written as the
product of and .

Consider the way to parenthesise the “prefix” .

Within the optimal parenthesisation of there must be an optimal
parenthesisation of .

If not, there is a cheaper parenthesisation of . We can use that one
in the optimal parenthesisation of instead to obtain an overall
lower cost, a contradiction.

Similarly for the the way to parenthesise the “suffix” .

k Ai:j
Ai:k Ak+1:j

Ai ⋅ … ⋅ Ak

Ai ⋅ … ⋅ Aj
Ai ⋅ … ⋅ Ak

Ai ⋅ … ⋅ Ak
Ai ⋅ … ⋅ Aj

Ak+1 ⋅ … ⋅ Aj

Optimal Substructure
For any , the optimal parenthesisation of splits the product
into and , and computes optimal parenthesisations
for the two subproducts.

i < j Ai ⋅ … ⋅ Aj
Ai ⋅ … ⋅ Ak Ak+1 ⋅ … ⋅ Aj

Ai ⋅ Ai+1 ⋅ … ⋅ Aℓ−1, Aℓ, Aℓ+1… ⋅ Aj−1 ⋅ Aj

We must consider all the possible splits, i.e., choices of .k

Defining a recursion

“The optimal parenthesisation chooses a split point and the computes optimal
parenthesisations for the subproblems on the left and on the right.”

Sounds like recursion!

Let denote the minimum cost (the minimum number of scalar
multiplications) required to compute the matrix .

What is the minimum cost of our problem?

.

M[i, j]
Ai:j

M[1,n]

Defining a recursion

Let denote the minimum cost (the minimum number of scalar
multiplications) required to compute the matrix .

What is the minimum cost of our problem?

.

What is for any ?

If , we have one matrix, so 0 cost.

 for all

M[i, j]
Ai:j

M[1,n]

M[i, i] i = 1,2,…, n

i = j

M[i, i] = 0 i = 1,2,…, n

Defining a recursion
Now consider the case where .

Consider the optimal parenthesisation of splits the product into and
.

Then consists of

the optimal cost of

i.e.,

and the optimal cost of

i.e.,

and the cost of multiplying and

i.e.,

i < j

Ai ⋅ … ⋅ Aj Ai ⋅ … ⋅ Ak
Ak+1 ⋅ … ⋅ Aj

M[i, j]

Ai ⋅ … ⋅ Ak

M[i, k]

Ak+1 ⋅ … ⋅ Aj

M[k + 1,j]

Ai:k Ak+1:j

pi−1pk pj

Defining a recursion

We have the following relation:

Notice: gives us the optimal costs, but not the optimal splits. To find
the optimal splits, we define to be the value such that

.

M[i, j] = {
0, if i = j,
mink∈[i,j){M[i, k] + M[k + 1,j] + pi−1pk pj} if i < j .

M[i, j]
S[i, j] k

M[i, j] = M[i, k] + M[k + 1,j] + pi−1pk pj

Computing a solution
We have the following relation:

We could now define a recursive algorithm straightforwardly using this.  

M[i, j] = {
0, if i = j,
mink∈[i,j){M[i, k] + M[k + 1,j] + pi−1pk pj} if i < j .

Running time?
The running time is given by the following recurrence relation:

We could now define a recursive algorithm straightforwardly using this.  

T(n) ≥ {
1, if n = 1,
1 + ∑n−1

k=1 (T(k) + T(n − k) + 1) if n > 1.

This recurrence relation evaluates to Ω(2n)

Computing the subproblems

M[1,4]

M[1,1] M[2,4]

M[1,2] M[3,4]

M[1,3] M[4,4]

M[1,2] M[1,1] M[2,2]

M[1,3]

M[1,1] M[2,3]

M[1,2] M[3,3]

Do you observe something?

How many distinct subproblems of the 
problem from to are there?i j

As many as the choice of that satisfy 

, i.e.,

i, j

i ≤ i ≤ j ≤ n (n
2)+n = Θ(n2)

The key is to store the calculation of 
the subproblems and reuse it.

A Dynamic Programming
algorithm

To compute , we need the values of and for all
.

So we will have to compute those first.

We work in a bottom-up manner.

M[i, j] M[i, k] M[k + 1,j]
i ≤ k ≤ j

A Dynamic Programming
algorithm

Example

A1 : 30 × 35

A2 : 35 × 15

A3 : 15 × 5

A4 : 5 × 10

A5 : 10 × 20

A6 : 20 × 25

A Dynamic Programming
algorithm

⏞

chains of length 1

The table M
0

0

0

0

0

0

A Dynamic Programming
algorithm

⏞

chains of length 1

chains of length 2
i = 1
j = 2

We are now computing M[1,2]
k = 1

M[1,1] + M[2,2] + p0p1p2
0 0

Example

A1 : 30 × 35

A2 : 35 × 15

A3 : 15 × 5

A4 : 5 × 10

A5 : 10 × 20

A6 : 20 × 25

p0p1p2 = 30 ⋅ 35 ⋅ 15 = 15750

The table M
0 15750

0

0

0

0

0

A Dynamic Programming
algorithm

⏞

chains of length 1

chains of length 2
i = 2

this goes up to 5

j = 3
We are now computing M[2,3]

k = 2
M[2,2] + M[3,3] + p1p2p3

Example

A1 : 30 × 35

A2 : 35 × 15

A3 : 15 × 5

A4 : 5 × 10

A5 : 10 × 20

A6 : 20 × 25

p1p2p3 = 35 ⋅ 15 ⋅ 5 = 2625

The table M
0 15750

0 2625

0

0

0

0

The table M
0 15750

0 2625

0 750

0 1000

0 5000

0

A Dynamic Programming
algorithm

⏞

chains of length 1

chains of length 3
i = 1
j = 3

We are now computing M[1,3]

k = 1 M[1,1] + M[2,3] + p0p1p3 = 0 + 2625+5250 = 7875
k = 2 M[1,2] + M[3,3] + p0p2p3 = 15750 + 0+2250 = 18000

The table M
0 15750 7875

0 2625

0 750

0 1000

0 5000

0

The table M
0 15750 7875 9375

0 2625 4375

0 750 2500

0 1000 3500

0 5000

0

A Dynamic Programming
algorithm

⏞

chains of length 1

chains of length 4
i = 2
j = 5

We are now computing M[2,5]

k = 2 M[2,2] + M[3,5] + p1p2p5 = 0 + 2500+35 ⋅ 15 ⋅ 20 = 13000
k = 3 M[2,3] + M[4,5] + p1p3p5 = 2625 + 1000+35 ⋅ 5 ⋅ 20 = 7125
k = 4 M[2,4] + M[5,5] + p1p4p5 = 4375 + 0+35 ⋅ 10 ⋅ 20 = 11375

The table M
0 15750 7875 9375

0 2625 4375 7125

0 750 2500

0 1000 3500

0 5000

0

The table M
0 15750 7875 9375 11875 15125

0 2625 4375 7125 10500

0 750 2500 5375

0 1000 3500

0 5000

0

optimal cost

Computing the optimal
solution

⏞

chains of length 1

chains of length 4
i = 2
j = 5

We are now computing M[2,5]

k = 2 M[2,2] + M[3,5] + p1p2p5 = 0 + 2500+35 ⋅ 15 ⋅ 20 = 13000
k = 3 M[2,3] + M[4,5] + p1p3p5 = 2625 + 1000+35 ⋅ 5 ⋅ 20 = 7125
k = 4 M[2,4] + M[5,5] + p1p4p5 = 4375 + 0+35 ⋅ 10 ⋅ 20 = 11375

optimal split

S[2,5] = 2

The table S
1 1 3 3 3

2 3 3 3

3 3 3

4 5

5

1

2

3

4

5

2 3 4 5 6

A1:6 = (A1:3) ⋅ (A4:6)

A1:3 = (A1:1) ⋅ (A2:3)

A4:6 = (A4:5) ⋅ (A6:6)

A1:6 = (A1:1 ⋅ (A2:3)) ⋅ ((A4:5) ⋅ A6:6)

A2:3 = (A2:2) ⋅ (A3:3)

A4:5 = (A4:4) ⋅ (A5:5)

A1:6 = (A1:1 ⋅ (A2:2 ⋅ A3:3)) ⋅ ((A4:4 ⋅ A5:5) ⋅ A6:6) = (A1 ⋅ (A2 ⋅ A3)) ⋅ ((A4 ⋅ A5) ⋅ A6)

Computing a solution
We have the following relation:

We could now define a recursive algorithm straightforwardly using this.  

M[i, j] = {
0, if i = j,
mink∈[i,j){M[i, k] + M[k + 1,j] + pi−1pk pj} if i < j .

Memoization

We write the procedure recursively in a natural manner, but we modify it to
save the result of each subproblem in a table.

The procedure first checks if we have computed the solution already in our
table.

If we have, it uses it without calling itself recursively.

If we have not, then it recurses to compute it.

A Dynamic Programming
algorithm (top-down)

⏞

Already computed? Return it!⏞

If the length of the problem is 1, 0 cost⏞

Use recursion to 
compute q

Dynamic Programming vs
Divide and Conquer

DP is an optimisation technique
and is only applicable to problems
with optimal substructure.

DP splits the problem into parts,
finds solutions to the parts and
joins them.

The parts are not significantly
smaller and are overlapping.

In DP, the subproblem dependency
can be represented by a DAG.

DQ is not normally used for
optimisation problems.

DQ splits the problem into parts,
finds solutions to the parts and
joins them.

The parts are significantly
smaller and do not normally
overlap.

In DQ, the subproblem
dependency can be represented
by a tree.

