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Dynamic Programming
The paradigm of dynamic programming:

Given a problem P, define a sequence of subproblems, with the following 
properties:

The subproblems are ordered from the smallest to the largest.

The largest problem is our original problem P.

The optimal solution of a subproblem can be constructed from the optimal 
solutions of sub-sub-problems. (Optimal Substructure).

Solve the subproblems from the smallest to the largest. When you solve a 
subproblem, store the solution (e.g., in an array) and use it to solve the 
larger subproblems.
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Motivation: A strand of DNA consists of a string of bases, with possible 
values Adenine, Cytosine, Guanine, and Thymine.


We can express a strand of DNA as a string, e.g.,  
ACCGGTCGAGTGCGCGGAAGCCGGCCAA 
GTCGTTCGGAATGCCGTTGCTCTGTAAA


We would like to compare two strands to see how similar they are (in order to 
see how similar two organisms are). 


Various way to do that. Here: Find the longest possible strand  which is a 
subsequence of both  and .

S1 =
S2 =

S3
S1 S2
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Subsequence

Given two sequences  and , find a common subsequence  that is as long 
as possible.

X Y Z

 is a subsequence of  if there exists a 
strictly increasing sequence  of indices of  such that for all 

 we have .

Z = ⟨z1, z2, …, zk⟩ X = ⟨x1, x2, ⋯, xm⟩
⟨i1, i2, …, ik⟩ X

j = 1,2,…, k xij = zj

Example:  is a subsequence of   , , .Z = ⟨B, C, D, B⟩ X = ⟨A, B, C B, D A, B⟩
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Brute Force

We could enumerate all subsequences of  and check for each one of them 
if it is also a subsequence of .

X
Y

How many subsequences does  have?X

Each subsequence is a subset of the indices .{1,2,…, m}

Therefore there are  of them. 2m

Exponential time. 
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Optimal Substructure
Proof:  
(1) Assume by contradiction that . zk ≠ xm = yn

We could add  to  to obtain a common subsequence of length , 
a contradiction. 

xm = yn Z k + 1

Consider the prefix : it is a common subsequence of length , and we 
would like to show that it is a LCS of  and .

Zk−1 k − 1
Xm−1 Yn−1

Assume by contradiction that there exists a longer common subsequence  
of  and  that has length at least .

W
Xm−1 Yn−1 k

If we append  to  we obtain a common subsequence of  and  of 
length  contradicting the fact that  is a LCS.

xm = yn W X Y
k + 1 Z
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Theorem (Optimal Substructure): 
Let  and  be two sequences, and let 

 be any LCS of  and . Then. 
 
1. If , then  and  is an LCS of  and . 
2. If  and  , then  is an LCS of  and . 
3. If  and  , then  is an LCS of  and . 

X = ⟨x1, x2, …, xm⟩ Y = ⟨y1, y2, …, yn⟩
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xm = yn zk = xm = yn Zk−1 Xm−1 Yn−1
xm ≠ yn zk ≠ xm Z Xm−1 Y
xm ≠ yn zk ≠ yn Z X Yn−1

Proof:  
(2) Since ,  is a common subsequence of  and . Assume by 
contradiction that it is no a LCS.

zk ≠ xm Z Xm−1 Y

Let  be a longer common subsequence, of length at least .W k + 1

But  is a common subsequence of  and , contradicting the fact that  is a 
LCS. 

W X Y Z
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Constructing a recursion

By the theorem, we have:

If , then we need to find a LCS of  and .xm = yn Xm−1 Yn−1

Otherwise, we need to solve two subproblems: 

Find a LCS of  and .Xm−1 Y

Find a LCS of  and .X Yn−1

Choose the one that is longer.
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Constructing a recursion
Let  be the length of a LCS of  and .C[i, j] Xi Yj

If  or , the LCS has length .i = 0 j = 0 0

 for all .C[i,0] = C[0,j] i, j

Otherwise we consider the two cases of the previous slide:

If , we have xi = xj C[i, j] = C[i − 1,j − 1] + 1

If , we have xi ≠ xj C[i, j] = max{C[i, j − 1], C[i − 1,j]}

C[i, j] =
0,  if i = 0 or j = 0,
C[i − 1,j − 1] + 1,  if i, j > 0 and xi = yj,
max{C[i, j − 1] . C[i − 1,j]} if i, j > 0 and xi ≠ yj .
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Algorithm

0 0 0 0

0

0

0

0

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⏟do we need this?
⏟can we use less space here?



The subset sum problem

We are given a set of n items {1, 2, … , n}.


Each item i has a non-negative weight wi.


We are given a bound W.


Goal: Select a subset S of the items such that  
 

    and   is maximised.∑
i∈N

wi ≤ W ∑
i∈N

wi
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Dynamic Programming
We need to identify the appropriate subproblems to use in order to 
solve the main problem.

Let Oi be the optimal solution to the subset be the optimal solution to 
the subset sum problem, using a subset of {1, 2,  … , i}, and let OPT(i) 
be its value.

Hence O is On, and OPT = OPT(n)

Should item n be in the optimal solution O or not?

If no, then OPT(n-1) = OPT(n)

If yes, ?



If n is in O



If n is in O

What information do we get about the other items?



If n is in O

What information do we get about the other items?

There is no reason to a-priori exclude any remaining item, 
unless adding it would exceed the weight.



If n is in O

What information do we get about the other items?

There is no reason to a-priori exclude any remaining item, 
unless adding it would exceed the weight.

The only information that we really get is that we now have 
weight W - wn left.
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What we really need
To find the optimal value OPT(n), we need

The optimal value OPT(n-1) if n is not in O.

The optimal value of the solution on input  
{1, 2 , …, n-1} and w = W - wn .

How many subproblems do we need?

One for each initial set {1, 2 , …, i} of items and each 
possible value for the remaining weight w.
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Subproblems
Assumptions:

W is an integer.

Every wi is an integer.

We will have one subproblem for each i=0,1, … ,n  and each 
integer 0 ≤ w ≤ W.

Let OPT(i,w) be the value of the optimal solution on subset 
{1, 2,  … , i} and maximum allowed weight w.
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Using this notation, what are we looking for?

OPT(n,W)

Should item n be in the optimal solution O or not?

If no, then OPT(n,W) = OPT(n-1,W).

If yes, then OPT(n,W)  = wn + OPT(n-1,W-wn).
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Subproblems
Is j in O ?

yes no

OPT(j,w)  = wj + OPT(j-1,w-wj). OPT(j,w) = OPT(j-1,w)

OPT(j,w) = max{ wj + OPT(j-1,w-wj) ,  OPT(j-1,w) }

Unless wj > w



Algorithm
Algorithm SubsetSum(n,W)


       Array M=[0 … n, 0 … W] 
       Initialise M[0, w] = 0, for each w = 0, 1 , … , W


       For i = 1, 2, … , n 
            For w = 0 , … , W 
               If (wi > w)                   \* If the item does not fit *\ 
                   M[i, w] = M[i-1, w] 
               Else 
                   M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi ]} 
               EndIf


        Return M[n, W]
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Optimal value



From values to solutions

Is j in O ?

yes no

OPT(j,w)  = wj + OPT(j-1,w-wj). OPT(j,w) = OPT(j-1,w)
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Running Time
Similar to weighted interval scheduling.

We are building up a table M of solutions (instead of an 
array).

We compute each value M(i, w) of the table in O(1) time 
using the previous values.

What is the running time overall?

How many entries does the table M have?
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Running Time

SubsetSum(n,W) runs in time O(nW).

Is this a polynomial time algorithm?

Not quite, because it depends on W.



Our input
wbin

1 wbin
2 wbin

3 Wbin

⏟n
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Running Time

SubsetSum(n,W) runs in time O(nW).

Is this a polynomial time algorithm?

It is pseudopolynomial, as it runs in time polynomial in n 
and the unary representation of W.

It is fairly efficient, if in the numbers involved in the input 
are reasonably small.
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Should we be happy?
Pseudopolynomial is good in some cases.

But why not polynomial?

How hard is it to design a polynomial time algorithm for 
subset sum?

Hard enough to justify a reward of 1 million dollars!

Subset sum is NP-hard!

More about that later on in the course.


