
Algorithms and Data Structures
Longest Common Subsequence, Subset Sum

Dynamic Programming

Dynamic Programming
The paradigm of dynamic programming:

Given a problem P, define a sequence of subproblems, with the following
properties:

Dynamic Programming
The paradigm of dynamic programming:

Given a problem P, define a sequence of subproblems, with the following
properties:

The subproblems are ordered from the smallest to the largest.

Dynamic Programming
The paradigm of dynamic programming:

Given a problem P, define a sequence of subproblems, with the following
properties:

The subproblems are ordered from the smallest to the largest.

The largest problem is our original problem P.

Dynamic Programming
The paradigm of dynamic programming:

Given a problem P, define a sequence of subproblems, with the following
properties:

The subproblems are ordered from the smallest to the largest.

The largest problem is our original problem P.

The optimal solution of a subproblem can be constructed from the optimal
solutions of sub-sub-problems. (Optimal Substructure).

Dynamic Programming
The paradigm of dynamic programming:

Given a problem P, define a sequence of subproblems, with the following
properties:

The subproblems are ordered from the smallest to the largest.

The largest problem is our original problem P.

The optimal solution of a subproblem can be constructed from the optimal
solutions of sub-sub-problems. (Optimal Substructure).

Solve the subproblems from the smallest to the largest. When you solve a
subproblem, store the solution (e.g., in an array) and use it to solve the
larger subproblems.

Longest Common
Subsequence

Longest Common
Subsequence

Motivation: A strand of DNA consists of a string of bases, with possible
values Adenine, Cytosine, Guanine, and Thymine.

We can express a strand of DNA as a string, e.g.,  
ACCGGTCGAGTGCGCGGAAGCCGGCCAA 
GTCGTTCGGAATGCCGTTGCTCTGTAAA

We would like to compare two strands to see how similar they are (in order to
see how similar two organisms are).

Various way to do that. Here: Find the longest possible strand which is a
subsequence of both and .

S1 =
S2 =

S3
S1 S2

Longest Common
Subsequence

Longest Common
Subsequence

Given two sequences and , find a common subsequence that is as long
as possible.

X Y Z

Longest Common
Subsequence

Given two sequences and , find a common subsequence that is as long
as possible.

X Y Z

 is a subsequence of if there exists a
strictly increasing sequence of indices of such that for all

 we have .

Z = ⟨z1, z2, …, zk⟩ X = ⟨x1, x2, ⋯, xm⟩
⟨i1, i2, …, ik⟩ X

j = 1,2,…, k xij = zj

Longest Common
Subsequence

Given two sequences and , find a common subsequence that is as long
as possible.

X Y Z

 is a subsequence of if there exists a
strictly increasing sequence of indices of such that for all

 we have .

Z = ⟨z1, z2, …, zk⟩ X = ⟨x1, x2, ⋯, xm⟩
⟨i1, i2, …, ik⟩ X

j = 1,2,…, k xij = zj

Example: is a subsequence of , , .Z = ⟨B, C, D, B⟩ X = ⟨A, B, C B, D A, B⟩

Brute Force

Brute Force

We could enumerate all subsequences of and check for each one of them
if it is also a subsequence of .

X
Y

Brute Force

We could enumerate all subsequences of and check for each one of them
if it is also a subsequence of .

X
Y

How many subsequences does have?X

Brute Force

We could enumerate all subsequences of and check for each one of them
if it is also a subsequence of .

X
Y

How many subsequences does have?X

Each subsequence is a subset of the indices .{1,2,…, m}

Brute Force

We could enumerate all subsequences of and check for each one of them
if it is also a subsequence of .

X
Y

How many subsequences does have?X

Each subsequence is a subset of the indices .{1,2,…, m}

Therefore there are of them. 2m

Brute Force

We could enumerate all subsequences of and check for each one of them
if it is also a subsequence of .

X
Y

How many subsequences does have?X

Each subsequence is a subset of the indices .{1,2,…, m}

Therefore there are of them. 2m

Exponential time.

Optimal Substructure

Optimal Substructure
Given a sequence , the th prefix of (for)
is defined as .

X = ⟨x1, x2, …, xm⟩ i X i = 1,2,…, m
Xi = ⟨x1, x2, …, xi⟩

Optimal Substructure
Given a sequence , the th prefix of (for)
is defined as .

X = ⟨x1, x2, …, xm⟩ i X i = 1,2,…, m
Xi = ⟨x1, x2, …, xi⟩

Example: , and .X = ⟨A, B, C, B, D, A, B⟩ X4 = ⟨A, B, C, B⟩ X0 = ⟨⟩

Optimal Substructure
Given a sequence , the th prefix of (for)
is defined as .

X = ⟨x1, x2, …, xm⟩ i X i = 1,2,…, m
Xi = ⟨x1, x2, …, xi⟩

Example: , and .X = ⟨A, B, C, B, D, A, B⟩ X4 = ⟨A, B, C, B⟩ X0 = ⟨⟩

Theorem (Optimal Substructure): 
Let and be two sequences, and let

 be any LCS of and . Then. 
 
1. If , then and is an LCS of and . 
2. If and , then is an LCS of and . 
3. If and , then is an LCS of and .

X = ⟨x1, x2, …, xm⟩ Y = ⟨y1, y2, …, yn⟩
Z = ⟨z1, z2, …, zk⟩ X Y

xm = yn zk = xm = yn Zk−1 Xm−1 Yn−1
xm ≠ yn zk ≠ xm Z Xm−1 Y
xm ≠ yn zk ≠ yn Z X Yn−1

Optimal Substructure
Theorem (Optimal Substructure): 
Let and be two sequences, and let

 be any LCS of and . Then. 
 
1. If , then and is an LCS of and . 
2. If and , then is an LCS of and . 
3. If and , then is an LCS of and . 

X = ⟨x1, x2, …, xm⟩ Y = ⟨y1, y2, …, yn⟩
Z = ⟨z1, z2, …, zk⟩ X Y

xm = yn zk = xm = yn Zk−1 Xm−1 Yn−1
xm ≠ yn zk ≠ xm Z Xm−1 Y
xm ≠ yn zk ≠ yn Z X Yn−1

Optimal Substructure
Theorem (Optimal Substructure): 
Let and be two sequences, and let

 be any LCS of and . Then. 
 
1. If , then and is an LCS of and . 
2. If and , then is an LCS of and . 
3. If and , then is an LCS of and . 

X = ⟨x1, x2, …, xm⟩ Y = ⟨y1, y2, …, yn⟩
Z = ⟨z1, z2, …, zk⟩ X Y

xm = yn zk = xm = yn Zk−1 Xm−1 Yn−1
xm ≠ yn zk ≠ xm Z Xm−1 Y
xm ≠ yn zk ≠ yn Z X Yn−1

 
1. , .X = ⟨x1, x2, …, xm−1, A⟩ Y = ⟨y1, y2, …, yn−1, A⟩ ⇒ Z = ⟨z1, z2, …, zk−1, A⟩

Optimal Substructure
Theorem (Optimal Substructure): 
Let and be two sequences, and let

 be any LCS of and . Then. 
 
1. If , then and is an LCS of and . 
2. If and , then is an LCS of and . 
3. If and , then is an LCS of and . 

X = ⟨x1, x2, …, xm⟩ Y = ⟨y1, y2, …, yn⟩
Z = ⟨z1, z2, …, zk⟩ X Y

xm = yn zk = xm = yn Zk−1 Xm−1 Yn−1
xm ≠ yn zk ≠ xm Z Xm−1 Y
xm ≠ yn zk ≠ yn Z X Yn−1

 
1. , .X = ⟨x1, x2, …, xm−1, A⟩ Y = ⟨y1, y2, …, yn−1, A⟩ ⇒ Z = ⟨z1, z2, …, zk−1, A⟩

2. , ,  

X = ⟨x1, x2, …, xm−1, A⟩ Y = ⟨y1, y2, …, yn−1, B⟩
Z = ⟨z1, z2, …, zk−1, Ā⟩

Optimal Substructure
Theorem (Optimal Substructure): 
Let and be two sequences, and let

 be any LCS of and . Then. 
 
1. If , then and is an LCS of and . 
2. If and , then is an LCS of and . 
3. If and , then is an LCS of and . 

X = ⟨x1, x2, …, xm⟩ Y = ⟨y1, y2, …, yn⟩
Z = ⟨z1, z2, …, zk⟩ X Y

xm = yn zk = xm = yn Zk−1 Xm−1 Yn−1
xm ≠ yn zk ≠ xm Z Xm−1 Y
xm ≠ yn zk ≠ yn Z X Yn−1

 
1. , .X = ⟨x1, x2, …, xm−1, A⟩ Y = ⟨y1, y2, …, yn−1, A⟩ ⇒ Z = ⟨z1, z2, …, zk−1, A⟩

2. , ,  

X = ⟨x1, x2, …, xm−1, A⟩ Y = ⟨y1, y2, …, yn−1, B⟩
Z = ⟨z1, z2, …, zk−1, Ā⟩

3. , ,  

X = ⟨x1, x2, …, xm−1, A⟩ Y = ⟨y1, y2, …, yn−1, B⟩
Z = ⟨z1, z2, …, zk−1, B̄⟩

Optimal Substructure

Optimal Substructure
Proof:  
(1) Assume by contradiction that . zk ≠ xm = yn

Optimal Substructure
Proof:  
(1) Assume by contradiction that . zk ≠ xm = yn

We could add to to obtain a common subsequence of length ,
a contradiction.

xm = yn Z k + 1

Optimal Substructure
Proof:  
(1) Assume by contradiction that . zk ≠ xm = yn

We could add to to obtain a common subsequence of length ,
a contradiction.

xm = yn Z k + 1

Consider the prefix : it is a common subsequence of length , and we
would like to show that it is a LCS of and .

Zk−1 k − 1
Xm−1 Yn−1

Optimal Substructure
Proof:  
(1) Assume by contradiction that . zk ≠ xm = yn

We could add to to obtain a common subsequence of length ,
a contradiction.

xm = yn Z k + 1

Consider the prefix : it is a common subsequence of length , and we
would like to show that it is a LCS of and .

Zk−1 k − 1
Xm−1 Yn−1

Assume by contradiction that there exists a longer common subsequence
of and that has length at least .

W
Xm−1 Yn−1 k

Optimal Substructure
Proof:  
(1) Assume by contradiction that . zk ≠ xm = yn

We could add to to obtain a common subsequence of length ,
a contradiction.

xm = yn Z k + 1

Consider the prefix : it is a common subsequence of length , and we
would like to show that it is a LCS of and .

Zk−1 k − 1
Xm−1 Yn−1

Assume by contradiction that there exists a longer common subsequence
of and that has length at least .

W
Xm−1 Yn−1 k

If we append to we obtain a common subsequence of and of
length contradicting the fact that is a LCS.

xm = yn W X Y
k + 1 Z

Optimal Substructure
Theorem (Optimal Substructure): 
Let and be two sequences, and let

 be any LCS of and . Then. 
 
1. If , then and is an LCS of and . 
2. If and , then is an LCS of and . 
3. If and , then is an LCS of and . 

X = ⟨x1, x2, …, xm⟩ Y = ⟨y1, y2, …, yn⟩
Z = ⟨z1, z2, …, zk⟩ X Y

xm = yn zk = xm = yn Zk−1 Xm−1 Yn−1
xm ≠ yn zk ≠ xm Z Xm−1 Y
xm ≠ yn zk ≠ yn Z X Yn−1

Optimal Substructure
Theorem (Optimal Substructure): 
Let and be two sequences, and let

 be any LCS of and . Then. 
 
1. If , then and is an LCS of and . 
2. If and , then is an LCS of and . 
3. If and , then is an LCS of and . 

X = ⟨x1, x2, …, xm⟩ Y = ⟨y1, y2, …, yn⟩
Z = ⟨z1, z2, …, zk⟩ X Y

xm = yn zk = xm = yn Zk−1 Xm−1 Yn−1
xm ≠ yn zk ≠ xm Z Xm−1 Y
xm ≠ yn zk ≠ yn Z X Yn−1

Proof:  
(2) Since , is a common subsequence of and . Assume by
contradiction that it is no a LCS.

zk ≠ xm Z Xm−1 Y

Optimal Substructure
Theorem (Optimal Substructure): 
Let and be two sequences, and let

 be any LCS of and . Then. 
 
1. If , then and is an LCS of and . 
2. If and , then is an LCS of and . 
3. If and , then is an LCS of and . 

X = ⟨x1, x2, …, xm⟩ Y = ⟨y1, y2, …, yn⟩
Z = ⟨z1, z2, …, zk⟩ X Y

xm = yn zk = xm = yn Zk−1 Xm−1 Yn−1
xm ≠ yn zk ≠ xm Z Xm−1 Y
xm ≠ yn zk ≠ yn Z X Yn−1

Proof:  
(2) Since , is a common subsequence of and . Assume by
contradiction that it is no a LCS.

zk ≠ xm Z Xm−1 Y

Let be a longer common subsequence, of length at least .W k + 1

Optimal Substructure
Theorem (Optimal Substructure): 
Let and be two sequences, and let

 be any LCS of and . Then. 
 
1. If , then and is an LCS of and . 
2. If and , then is an LCS of and . 
3. If and , then is an LCS of and . 

X = ⟨x1, x2, …, xm⟩ Y = ⟨y1, y2, …, yn⟩
Z = ⟨z1, z2, …, zk⟩ X Y

xm = yn zk = xm = yn Zk−1 Xm−1 Yn−1
xm ≠ yn zk ≠ xm Z Xm−1 Y
xm ≠ yn zk ≠ yn Z X Yn−1

Proof:  
(2) Since , is a common subsequence of and . Assume by
contradiction that it is no a LCS.

zk ≠ xm Z Xm−1 Y

Let be a longer common subsequence, of length at least .W k + 1

But is a common subsequence of and , contradicting the fact that is a
LCS.

W X Y Z

Constructing a recursion

Constructing a recursion

By the theorem, we have:

Constructing a recursion

By the theorem, we have:

If , then we need to find a LCS of and .xm = yn Xm−1 Yn−1

Constructing a recursion

By the theorem, we have:

If , then we need to find a LCS of and .xm = yn Xm−1 Yn−1

Otherwise, we need to solve two subproblems:

Constructing a recursion

By the theorem, we have:

If , then we need to find a LCS of and .xm = yn Xm−1 Yn−1

Otherwise, we need to solve two subproblems:

Find a LCS of and .Xm−1 Y

Constructing a recursion

By the theorem, we have:

If , then we need to find a LCS of and .xm = yn Xm−1 Yn−1

Otherwise, we need to solve two subproblems:

Find a LCS of and .Xm−1 Y

Find a LCS of and .X Yn−1

Constructing a recursion

By the theorem, we have:

If , then we need to find a LCS of and .xm = yn Xm−1 Yn−1

Otherwise, we need to solve two subproblems:

Find a LCS of and .Xm−1 Y

Find a LCS of and .X Yn−1

Choose the one that is longer.

Constructing a recursion

Constructing a recursion
Let be the length of a LCS of and .C[i, j] Xi Yj

Constructing a recursion
Let be the length of a LCS of and .C[i, j] Xi Yj

If or , the LCS has length .i = 0 j = 0 0

Constructing a recursion
Let be the length of a LCS of and .C[i, j] Xi Yj

If or , the LCS has length .i = 0 j = 0 0

 for all .C[i,0] = C[0,j] i, j

Constructing a recursion
Let be the length of a LCS of and .C[i, j] Xi Yj

If or , the LCS has length .i = 0 j = 0 0

 for all .C[i,0] = C[0,j] i, j

Otherwise we consider the two cases of the previous slide:

Constructing a recursion
Let be the length of a LCS of and .C[i, j] Xi Yj

If or , the LCS has length .i = 0 j = 0 0

 for all .C[i,0] = C[0,j] i, j

Otherwise we consider the two cases of the previous slide:

If , we have xi = xj C[i, j] = C[i − 1,j − 1] + 1

Constructing a recursion
Let be the length of a LCS of and .C[i, j] Xi Yj

If or , the LCS has length .i = 0 j = 0 0

 for all .C[i,0] = C[0,j] i, j

Otherwise we consider the two cases of the previous slide:

If , we have xi = xj C[i, j] = C[i − 1,j − 1] + 1

If , we have xi ≠ xj C[i, j] = max{C[i, j − 1], C[i − 1,j]}

Constructing a recursion
Let be the length of a LCS of and .C[i, j] Xi Yj

If or , the LCS has length .i = 0 j = 0 0

 for all .C[i,0] = C[0,j] i, j

Otherwise we consider the two cases of the previous slide:

If , we have xi = xj C[i, j] = C[i − 1,j − 1] + 1

If , we have xi ≠ xj C[i, j] = max{C[i, j − 1], C[i − 1,j]}

C[i, j] =
0, if i = 0 or j = 0,
C[i − 1,j − 1] + 1, if i, j > 0 and xi = yj,
max{C[i, j − 1] . C[i − 1,j]} if i, j > 0 and xi ≠ yj .

A Dynamic Programming
Algorithm

A Dynamic Programming
Algorithm

0

A Dynamic Programming
Algorithm

0 0

A Dynamic Programming
Algorithm

0 0 0

A Dynamic Programming
Algorithm

0 0 0 0

A Dynamic Programming
Algorithm

0 0 0 0

0

A Dynamic Programming
Algorithm

0 0 0 0

0

0

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

0

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

0

⋆

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

0

⋆ ⋆

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

0

⋆ ⋆ ⋆

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

0

⋆ ⋆ ⋆

⋆

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

0

⋆ ⋆ ⋆

⋆ ⋆

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

0

⋆ ⋆ ⋆

⋆ ⋆ ⋆

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

0

⋆ ⋆ ⋆

⋆ ⋆ ⋆

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

0

⋆ ⋆ ⋆

⋆ ⋆ ⋆

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

0

⋆ ⋆ ⋆

⋆ ⋆ ⋆

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

0

⋆ ⋆ ⋆

⋆ ⋆ ⋆

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

0

⋆ ⋆ ⋆

⋆ ⋆ ⋆

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

0

⋆ ⋆ ⋆

⋆ ⋆ ⋆

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

Is ?x1 = y1

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

Is ?x1 = y1

C[0,1] = 0

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

Is ?x1 = y1

C[0,1] = 0
C[1,0] = 0

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

Is ?x1 = y1

C[0,1] = 0
C[1,0] = 0

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

Is ?x1 = y1

C[0,1] = 0
C[1,0] = 0

0

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

Is ?x1 = y2

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

Is ?x1 = y2

C[0,2] = 0

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

Is ?x1 = y2

C[0,2] = 0
C[1,1] = 0

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

Is ?x1 = y2

C[0,2] = 0
C[1,1] = 0

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

Is ?x1 = y2

C[0,2] = 0
C[1,1] = 0

0

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

C[0,2] = 0
C[1,1] = 0

0

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

C[0,2] = 0
C[1,1] = 0

0

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

C[0,2] = 0
C[1,1] = 0

0 0

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

C[0,2] = 0
C[1,1] = 0

0 0

Is ?x1 = y4

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

C[0,2] = 0
C[1,1] = 0

0 0

Is ?x1 = y4

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

C[0,2] = 0
C[1,1] = 0

0 0

Is ?x1 = y4

1

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

C[0,2] = 0
C[1,1] = 0

0 0 1

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

C[0,2] = 0
C[1,1] = 0

0 0 1

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

C[0,2] = 0
C[1,1] = 0

0 0 1 1

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

C[0,1] = 0
C[1,0] = 0

0

C[0,2] = 0
C[1,1] = 0

0 0 1 1 1

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

0 0 0 1 1 1
1 1 1 1 2 2
1 1

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

0 0 0 1 1 1
1 1 1 1 2 2
1 1

Next to compute: C[3,3]

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

Is ?x3 = y3

0 0 0 1 1 1
1 1 1 1 2 2
1 1

Next to compute: C[3,3]

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

Is ?x3 = y3

0 0 0 1 1 1
1 1 1 1 2 2
1 1

Next to compute: C[3,3]

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

Is ?x3 = y3

0 0 0 1 1 1
1 1 1 1 2 2
1 1

Next to compute: C[3,3]

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

Is ?x3 = y3

0 0 0 1 1 1
1 1 1 1 2 2
1 1

Next to compute: C[3,3]

2

Example
0 0 0 0
0
0
0
0

0 0 0

0
0
0

A
B

B

C
B

A
D

B B AAD C

0 0 0 1 1 1
1 1 1 1 2 2
1 1 2 2 2 2
1
1
1
1

1
2
2
2

2
2
2
2

2
2
3
3

3
3
3
4

3
3
4
4

Example
A
B

B

C
B

A
D

B B AAD C

Example
A
B

B

C
B

A
D

B B AAD C

Example
A
B

B

C
B

A
D

B B AAD C

Example
A
B

B

C
B

A
D

B B AAD C

Example
A
B

B

C
B

A
D

B B AAD C

Example
A
B

B

C
B

A
D

B B AAD C

Example
A
B

B

C
B

A
D

B B AAD C

Example
A
B

B

C
B

A
D

B B AAD C

Example
A
B

B

C
B

A
D

B B AAD C

Example
A
B

B

C
B

A
D

B B AAD C

Example
A
B

B

C
B

A
D

B B AAD C

A

Example
A
B

B

C
B

A
D

B B AAD C

B A

Example
A
B

B

C
B

A
D

B B AAD C

B AC

Example
A
B

B

C
B

A
D

B B AAD C

B ACB

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

0

⋆ ⋆ ⋆

⋆ ⋆ ⋆

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

0

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⏟do we need this?

A Dynamic Programming
Algorithm

0 0 0 0

0

0

0

0

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⏟do we need this?
⏟can we use less space here?

The subset sum problem

We are given a set of n items {1, 2, … , n}.

Each item i has a non-negative weight wi.

We are given a bound W.

Goal: Select a subset S of the items such that  
 

 and is maximised.∑
i∈N

wi ≤ W ∑
i∈N

wi

Dynamic Programming

Dynamic Programming
We need to identify the appropriate subproblems to use in order to
solve the main problem.

Dynamic Programming
We need to identify the appropriate subproblems to use in order to
solve the main problem.

Let Oi be the optimal solution to the subset be the optimal solution to
the subset sum problem, using a subset of {1, 2, … , i}, and let OPT(i)
be its value.

Dynamic Programming
We need to identify the appropriate subproblems to use in order to
solve the main problem.

Let Oi be the optimal solution to the subset be the optimal solution to
the subset sum problem, using a subset of {1, 2, … , i}, and let OPT(i)
be its value.

Hence O is On, and OPT = OPT(n)

Dynamic Programming
We need to identify the appropriate subproblems to use in order to
solve the main problem.

Let Oi be the optimal solution to the subset be the optimal solution to
the subset sum problem, using a subset of {1, 2, … , i}, and let OPT(i)
be its value.

Hence O is On, and OPT = OPT(n)

Should item n be in the optimal solution O or not?

Dynamic Programming
We need to identify the appropriate subproblems to use in order to
solve the main problem.

Let Oi be the optimal solution to the subset be the optimal solution to
the subset sum problem, using a subset of {1, 2, … , i}, and let OPT(i)
be its value.

Hence O is On, and OPT = OPT(n)

Should item n be in the optimal solution O or not?

If no, then OPT(n-1) = OPT(n)

Dynamic Programming
We need to identify the appropriate subproblems to use in order to
solve the main problem.

Let Oi be the optimal solution to the subset be the optimal solution to
the subset sum problem, using a subset of {1, 2, … , i}, and let OPT(i)
be its value.

Hence O is On, and OPT = OPT(n)

Should item n be in the optimal solution O or not?

If no, then OPT(n-1) = OPT(n)

If yes, ?

If n is in O

If n is in O

What information do we get about the other items?

If n is in O

What information do we get about the other items?

There is no reason to a-priori exclude any remaining item,
unless adding it would exceed the weight.

If n is in O

What information do we get about the other items?

There is no reason to a-priori exclude any remaining item,
unless adding it would exceed the weight.

The only information that we really get is that we now have
weight W - wn left.

What we really need

What we really need
To find the optimal value OPT(n), we need

What we really need
To find the optimal value OPT(n), we need

The optimal value OPT(n-1) if n is not in O.

What we really need
To find the optimal value OPT(n), we need

The optimal value OPT(n-1) if n is not in O.

The optimal value of the solution on input  
{1, 2 , …, n-1} and w = W - wn .

What we really need
To find the optimal value OPT(n), we need

The optimal value OPT(n-1) if n is not in O.

The optimal value of the solution on input  
{1, 2 , …, n-1} and w = W - wn .

How many subproblems do we need?

What we really need
To find the optimal value OPT(n), we need

The optimal value OPT(n-1) if n is not in O.

The optimal value of the solution on input  
{1, 2 , …, n-1} and w = W - wn .

How many subproblems do we need?

One for each initial set {1, 2 , …, i} of items and each
possible value for the remaining weight w.

Subproblems

Subproblems
Assumptions:

Subproblems
Assumptions:

W is an integer.

Subproblems
Assumptions:

W is an integer.

Every wi is an integer.

Subproblems
Assumptions:

W is an integer.

Every wi is an integer.

We will have one subproblem for each i=0,1, … ,n and each
integer 0 ≤ w ≤ W.

Subproblems
Assumptions:

W is an integer.

Every wi is an integer.

We will have one subproblem for each i=0,1, … ,n and each
integer 0 ≤ w ≤ W.

Let OPT(i,w) be the value of the optimal solution on subset
{1, 2, … , i} and maximum allowed weight w.

Subproblems

Subproblems

Using this notation, what are we looking for?

Subproblems

Using this notation, what are we looking for?

OPT(n,W)

Subproblems

Using this notation, what are we looking for?

OPT(n,W)

Should item n be in the optimal solution O or not?

Subproblems

Using this notation, what are we looking for?

OPT(n,W)

Should item n be in the optimal solution O or not?

If no, then OPT(n,W) = OPT(n-1,W).

Subproblems

Using this notation, what are we looking for?

OPT(n,W)

Should item n be in the optimal solution O or not?

If no, then OPT(n,W) = OPT(n-1,W).

If yes, then OPT(n,W) = wn + OPT(n-1,W-wn).

Subproblems
Is j in O ?

yes no

OPT(j,w) = wj + OPT(j-1,w-wj). OPT(j,w) = OPT(j-1,w)

Subproblems
Is j in O ?

yes no

OPT(j,w) = wj + OPT(j-1,w-wj). OPT(j,w) = OPT(j-1,w)

OPT(j,w) = max{ wj + OPT(j-1,w-wj) , OPT(j-1,w) }

Subproblems
Is j in O ?

yes no

OPT(j,w) = wj + OPT(j-1,w-wj). OPT(j,w) = OPT(j-1,w)

OPT(j,w) = max{ wj + OPT(j-1,w-wj) , OPT(j-1,w) }

Unless wj > w

Algorithm
Algorithm SubsetSum(n,W)

 Array M=[0 … n, 0 … W] 
 Initialise M[0, w] = 0, for each w = 0, 1 , … , W

 For i = 1, 2, … , n 
 For w = 0 , … , W 
 If (wi > w) * If the item does not fit *\ 
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

 Return M[n, W]

Two dimensional array
n 0

n-1 0

… 0

… 0

i 0

i-1 0

… 0

2 0

1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 … w-wi w W

Two dimensional array
n 0

n-1 0

… 0

… 0

i 0

i-1 0

… 0

2 0

1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 … w-wi w W

OPT(n,W)

Two dimensional array
n 0

n-1 0

… 0

… 0

i 0

i-1 0

… 0

2 0

1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 … w-wi w W

OPT(n,W)

Two dimensional array
n 0

n-1 0

… 0

… 0

i 0

i-1 0

… 0

2 0

1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 … w-wi w W

OPT(n,W)

OPT(n-1,W)

Two dimensional array
n 0

n-1 0

… 0

… 0

i 0

i-1 0

… 0

2 0

1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 … w-wi w W

OPT(n,W)

OPT(n-1,W)

OPT(n-2,W)

OPT(n-2,W-wn-2)

Two dimensional array
n 0

n-1 0

… 0

… 0

i 0

i-1 0

… 0

2 0

1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 … w-wi w W

OPT(n,W)

OPT(n-1,W)

OPT(n-2,W)

OPT(n-2,W-wn-2)

Two dimensional array
n 0

n-1 0

… 0

… 0

i 0

i-1 0

… 0

2 0

1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 … w-wi w W

OPT(n,W)

OPT(n-1,W)

OPT(n-2,W)

OPT(n-2,W-wn-2)

Two dimensional array
n 0

n-1 0

… 0

… 0

i 0

i-1 0

… 0

2 0

1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 … w-wi w W

OPT(n,W)

OPT(n-1,W)

OPT(n-2,W)

OPT(n-2,W-wn-2)

Two dimensional array
n 0

n-1 0

… 0

… 0

i 0

i-1 0

… 0

2 0

1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 … w-wi w W

OPT(n,W)

OPT(n-1,W)

OPT(n-2,W)

OPT(n-2,W-wn-2)

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

Array M=[0 … n, 0 … W] 
 Initialise M[0, w] = 0, for each w = 0, 1 , … , W

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

doesn’t fit

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1 0

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1 0

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

doesn’t fit

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1 0 0

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1 0 0

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

fits

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1 0 0

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

fits

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1 0 0

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

fits

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1 0 0 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2 0 0

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2 0 0 2

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2 0 0 2 2

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2 0 0 2 2 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3 0 0 2

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3 0 0 2 3

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3 0 0 2 3 4

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3 0 0 2 3 4 5

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3 0 0 2 3 4 5 5

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Example
n=3, W=6, w1 = w2 = 2 and w3 = 3.

3 0 0 2 3 4 5 5

2 0 0 2 2 4 4 4

1 0 0 2 2 2 2 2

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6

For w = 0 , … , W 
 If (wi > w)  
 M[i, w] = M[i-1, w] 
 Else 
 M[i, w] = max{M[i-1, w] , wi + M[i-1, w-wi]} 
 EndIf

Optimal value

From values to solutions

Is j in O ?

yes no

OPT(j,w) = wj + OPT(j-1,w-wj). OPT(j,w) = OPT(j-1,w)

Running Time

Running Time
Similar to weighted interval scheduling.

Running Time
Similar to weighted interval scheduling.

We are building up a table M of solutions (instead of an
array).

Running Time
Similar to weighted interval scheduling.

We are building up a table M of solutions (instead of an
array).

We compute each value M(i, w) of the table in O(1) time
using the previous values.

Running Time
Similar to weighted interval scheduling.

We are building up a table M of solutions (instead of an
array).

We compute each value M(i, w) of the table in O(1) time
using the previous values.

What is the running time overall?

Running Time
Similar to weighted interval scheduling.

We are building up a table M of solutions (instead of an
array).

We compute each value M(i, w) of the table in O(1) time
using the previous values.

What is the running time overall?

How many entries does the table M have?

Running Time

Running Time

SubsetSum(n,W) runs in time O(nW).

Running Time

SubsetSum(n,W) runs in time O(nW).

Is this a polynomial time algorithm?

Running Time

SubsetSum(n,W) runs in time O(nW).

Is this a polynomial time algorithm?

Not quite, because it depends on W.

Our input
wbin

1 wbin
2 wbin

3 Wbin

⏟n

Running Time

SubsetSum(n,W) runs in time O(nW).

Is this a polynomial time algorithm?

Running Time

SubsetSum(n,W) runs in time O(nW).

Is this a polynomial time algorithm?

It is pseudopolynomial, as it runs in time polynomial in n
and the unary representation of W.

Running Time

SubsetSum(n,W) runs in time O(nW).

Is this a polynomial time algorithm?

It is pseudopolynomial, as it runs in time polynomial in n
and the unary representation of W.

It is fairly efficient, if in the numbers involved in the input
are reasonably small.

Should we be happy?

Should we be happy?
Pseudopolynomial is good in some cases.

Should we be happy?
Pseudopolynomial is good in some cases.

But why not polynomial?

Should we be happy?
Pseudopolynomial is good in some cases.

But why not polynomial?

How hard is it to design a polynomial time algorithm for
subset sum?

Should we be happy?
Pseudopolynomial is good in some cases.

But why not polynomial?

How hard is it to design a polynomial time algorithm for
subset sum?

Hard enough to justify a reward of 1 million dollars!

Should we be happy?
Pseudopolynomial is good in some cases.

But why not polynomial?

How hard is it to design a polynomial time algorithm for
subset sum?

Hard enough to justify a reward of 1 million dollars!

Should we be happy?
Pseudopolynomial is good in some cases.

But why not polynomial?

How hard is it to design a polynomial time algorithm for
subset sum?

Hard enough to justify a reward of 1 million dollars!

Subset sum is NP-hard!

Should we be happy?
Pseudopolynomial is good in some cases.

But why not polynomial?

How hard is it to design a polynomial time algorithm for
subset sum?

Hard enough to justify a reward of 1 million dollars!

Subset sum is NP-hard!

More about that later on in the course.

