Informatics 2 - Introduction to Algorithms and Data
Structures
Solutions for tutorial 4

1. (a) Choosing not to count the function header as a line to be executed, when j—i =1
we execute exactly 3 lines (whether our search succeeds or fails) Otherwise, we will
perform 5 line executions, along with one of the subcalls binarySearch(A key,i k)
or binarySearch(A key,k,j). These are subproblems of size |n/2] and [n/2] re-
spectively, so in the worst case the subproblem will have size [n/2]. This leads us
to the recurrence:

T(1) = 3
T(n) = T([n/2])+5 whenn >1

(Minor differences arising from other views of what counts as a line execution
obviously don’t matter.)

(b) Simplifying down to asymptotics, and forgetting the ceiling, we get

T(1) = ©(1)
T(n) = T(n/2)+06(1) whenn >1

This is in the right form for the Master Theorem, with a =1, b =2, £ = 0. Since
bk =20 = 1 = @, we are in the ‘middle case’ of the theorem, and we conclude that
T(n) = O(n*lgn) = ©(lgn) (which agrees with our earlier conclusions).
(c) These are easy exercises in plugging the relevant numbers into the Master Theo-
rem:
i. T(n) = 2T(n/3) + O(n): Here a = 2,b = 3,k = 1. So a < b*, and we
conclude T'(n) = O(n*) = O(n).
ii. T(n) = 7T(n/2) + O(n?): Here a = 7,b = 2,k = 2. So a > b*, and we
conclude T'(n) = O(nl827) = ©(n2807),
Note: This is actually the recurrence relation arising from Strassen’s amazing
algorithm for multiplying two n X n matrices, which is covered in UG3 Algo-
rithms and Data Structures, and which improves asymptotically on the ©(n?)
runtime of the obvious method.
iii. T(n) = 2T(n/4) + ©(y/n): Here a = 2,b = 4,k = 1/2. So a = b¥, and we
conclude T'(n) = O(y/nlgn).



2. Draw the heap, and each intermediate state, which is created when we apply the Max-
Heap-Insert algorithm to the following sequence of elements {12, 5, 4, 8, 9, 1, 16, 20, 7,
6}. At each step draw both the tree representation and the contents of the array.

20,16,12,9,8,1,4,5,7 20,16,12,9,8,1,4,5,7,6

Figure 1: Tree and array representation of the heap from question 1

answer: We work on the heap, taking each element in the sequence, and temporarily
add it to the heap as the new last node, then may need to rearrange the tree.

In the figures you can see the situation after one of the Max-Heap-Insert calls. We
aren’t actually showing the rearranging, so maybe when doing this on the board, you
may want to first place the new element into the last node, and show the students how
to rearrange up the heap. For example, when 8 goes in, it first is added as the left child
of 5, which at that point is the first available leaf node, and then it gets swapped with
its parent 5.

Under each figure is written the array representation of the heap. However, this is very
easy to show, it’s just what you get when you read the heap level-by-level into the array
(though of course, the Max-Heap-Insert algorithm can be implemented directly onto the
array, with rearranging done directly there).

3. Show that when we consider a list of items in sorted order (smallest first) that it will
take time Q(nlog(n)) to insert them into an initially empty heap. Give details of the
running-time we will have for each of the individual Max-Heap-Insert operations (and
why), and then show that the total running-time for this bad case satisfies Q(nlog(n)).



Why does this differ from the ©(n) running-time for Build-Max-Heap on the input array?

answer: The key observation is that if the value of the key of the item being inserted
into a heap exceeds the values of all the n items already stored in the heap, then Max-
Heap-Insert will take time O(h) = O(lg(n)), where h is the height of the heap (because
the new item will need to be swapped all the way up to the root of the heap). So if we
insert an increasing sequence of n items the total taken is

Z Qlg(i)) > Z 1g(i)) drop the smallest log {gJ terms
=1 i=[31

= n .. n

> Q( Z lg (5)) remaining terms all at least§

=21

> 205 (3)) € QAnlgn),

so the time taken to insert the list (1,2,...,n) into an initially empty heap is Q(nlgn).

Build-Max-Heap: Observe that both Max-Heapify and Max-Heap-Insert are O(h), where
h is the height of the heap. Hence, to contrast the running times, we simply need to
look at the amount of times each is called for each heap size. Let h = lg(n) be the
height of the heap with n elements. While using Build-Max-Heap we have 1 call on a
heap of height h, two on heaps of height A — 1, four on heaps of size h — 2, and so on
until we have i € {1,..., 2h_1} calls on heaps of height 1 (heaps of height 0 need no
Max-Heapify-ing). On the other hand, when inserting {1,...,n} we have one call on a
heap of height 0, two on heaps of height 1, four on heaps of height 2, and so on until
we have i € [1..2"] on heaps of height h. From this we can see the Build-Max-Heap
algorithm is organised to ensure that more calls are made on smaller heaps (because it
knows all the input in advance of constructing the heap). However, when inserting the
items one by one, it is possible that the input is presented in such a way that we do a
large number of calls which depend on lg(n).

Below are two tables which may illuminate the number of times the O(h) operations
are called for each heap height.

Build-Max-Heap . ..

height: | lg(n) | lg(n) —1 | lg(n) —2 | ......... 1
fcalls 1 2 N ~n/4

Max-Heap-Insert with {1,...,n} ...



height:

lg(n —1)

lg(n —2)

ficalls

lg(n)
1

1

1

Notice that 1g(j) > lg(n) — 1 for all j > n/2 (there are n/2 such j),
that 1g(j) > 1g(n) — 2 for all j <n/2,5 > n/4 (there are n/4 such j),
that 1g(7) > lg(n) — 3 for all j < n/4,7 > n/8 (there are n/8 such j), ...

So the Max-Heap-Insert table is really something like ...

lg(n) —1 | 1g(n) —2 | lg(n) -3
n/2 n/4 n/8

......... 1
......... 1

height:
ficalls

If we consider this against the Buildheap table we can see the difference in how the
call-sizes are skewed towards/away-from the higher heaps.

. In the case of an indexed-from-0 array, the expressions are

1

Parent(i) = [J -1
Left(i) =
Right(i) =

2i+1
21+ 2

(assuming the items exist of course. Have pre-conditions of ¢ > 0, 2i + 1 < heap_size
and 2i + 2 < heap_size respectively)

. This is a discussion question about heapq in Python and the differences from the clas-
sical Heap methods in CLRS/slides.

answer: The methods in heapq are heappush (heap, item), heappop(heap), heapify(x)
(to transform the list x into a heap), and heapreplace (heap, item). They also have
“private” methods _siftdown and _siftup.

Their implementation is based on a min heap, so heappop (heap) and heap[0] give the
minimum element not the largest.

They mention that heap.sort() (for their default sorting algorithm of Python)will
result in a list /array satisfying the heap property - that is because this is a min heap.

Now the particular methods:

e heappush is essentially an implemention of Min-Heap-Insert. It does an append
to the list/array and then a call to _siftdown with indices 0 and len(heap)-1.
siftdown is the bubbling-up process done by Heap-Insert.

Work is ©(1) plus the work done by the _siftdown call, which will be O(h) for
height h as with Min-Heap-Insert.



e heappop is an implementation of Heap-Extract-Min (for a Min Heap). It locally

copies the min item heap[0], then copies the final element of the heap into this
‘top’ position, and finally does a call to _siftup with index 0 to fix the heap
property.
Work is ©(1) plus the work done by the _siftup call, which will be O(h) for
height h. In fact _siftup works a bit differently to the classic (Min variant
of) Heapify, but it will still have the same ©(h) running-time for a sub-Heap of
height h.

e heapreplace is a new method not in our classical set-up - if we want to both
extract the min and also put in a new item., it makes sense to read heap[0] and
then replace it with the new item, then a call to _siftup.

This is just an ‘optimisation’ method for when we do the two operations in order,
will do a bit less work overall but still have ©(h) running-time.

e heappushpop where we plan to first pop and then push implements a shortcut and
a call to _siftup

Also an ‘optimisation’ method for when we do the two operations in order, will do
a bit less work overall but still have ©(h) running-time.

e heapify(x) called on the list x is really is our Build-Heap. It runs bottom-up
from indices [n/2] down to 0, doing _siftup(i) on each such index.
This will run in ©(n) time overall as discussed in the comments in the source file,
ie the same time as Build-Heap.

There are also _max variants of some of these methods, to operate on a max heap.
However not all methods have a ‘Max’ variant, for example there is no heappush_max.

There are also two ‘private’ methods _siftdown and _siftup.

e _siftdown is a method which does the ‘bubbling up” part of our Max-Heap-Insert.
It is a bit more general than the bubbling-up of Max-Heap-Insert as it has an index
parameter to mark the limit of the bubbling (don’t necessarily) go all the way to
the top.

e _siftup is a method which has the same effect as (a Min variant of) Heapify. It
is called at a node/index pos whose two child sub-Heaps are true heaps, but where
the item at pos breaks the rules, and then it fixes everything to satisfy the Heap
property from pos down.

It works a bit different to Heapify, however the asymptotic running time is also
©(h) running-time for a sub-Heap of height h.



