
Informatics 2 – Introduction to Algorithms

and Data Structures

Tutorial 5

1. In lectures we showed that the worst-case running-time for QuickSort is Ω(n2). We
mentioned without proof that the average-case running-time is Θ(n lg n).

In this question we show that the best-case running-time of QuickSort is Θ(n lg n).

(a) Try to give an actual example of an input array where QuickSort takes only
O(n lg n) time to sort. This is asking what kind of pattern will cause the array to
repeatedly be split (roughly) in half. I’m not looking for something very precise
here - if you can get the answer for n = 15 that would be very good.

(b) (a bit hard) First show that the best case running time will always be at least
cn lg n, for some constant c > 0.

[Hint: For this part, think about the recursion tree for QuickSort, and the total
amount of work done across a level.]

For both parts of this question it will help to work with an n of the form 2h − 1 to
help ensure equal splits (plus an excluded item at “split”) can be achieved recursively.

2. Consider the following graph:

(a) Write the adjacency matrix and the adjacency list representation for the graph.
For the adjacency list (for this example, for consistency wrt solutions) we ask
you to consider the neighbours of a vertex in ascending numerical order in the
list for each node.

(b) Run Queue-based Breadth-First Search (BFS) on G starting from node 0. Ex-
plain the steps of BFS and note the level that each node will be assigned to

1

during the execution of BFS. Write down the spanning tree produced by BFS in
adjacency list representation.

(c) Run Stack-based Depth-First Search (DFS) on G starting from node 0. Explain
the steps of DFS and note the order in which the nodes will be explored by DFS.
Write down the spanning tree produced by DFS in adjacency list representation.

(d) Compare the two spanning trees produced by DFS and BFS starting from node
0 respectively. What do you observe?

3. Prove the following property for the layers produced by BFS: for any edge (u, v), either
u and v are in the same layer of the “breadth-first tree”, or else |L(u) − L(v)| = 1
where L(x) is the layer of node x.

4. Suppose we are given an undirected graph G = (V,E) and asked to determine whether
the graph is bipartite - that is, whether V can be partitioned into two subsets V =
V1]V2 such that every edge e = (u, v) has one endpoint in V1 and one endpoint in V2.

Show how to answer this question in O(n + m) time.

5. A directed graph G = (V,E) is said to be acyclic (sometimes called a dag)if there
is no subset of vertices which forms a directed cycle in G. It is well-known in graph
theory that if a graph is acyclic (sometimes called a dag) then there must be some
reordering of V so that for every edge (u, v) ∈ E, u appears before v in the ordering.
Such a recording is called a topological sort.

Consider the following method for performing topological sorting on a directed acyclic
graph G = (V,E): repeatedly find a vertex of in-degree 0, output it, and then remove
it and all of its outgoing edges from the graph.

(a) How can you implement this so that the entire algorithm will be O(|V |+ |E|)?
Hint: Note that in regard to in-degree, we only need to track the number of
incoming edges to each v.

(b) How will you detect that the graph has cycles?

6. (*) Design an algorithm to sort and return the least k elements of a list using the
same partition subroutine of quickSort. How does the worst case execution time
of this algorithm compare to that of quickSort?

2

