
Introduction to Theoretical Computer Science
Lecture 15: Recursion and Typed λ-Calculus

Richard Mayr

University of Edinburgh

Semester 1, 2025/2026

Puzzle

Puzzle
Find a λ-term Y such that

Y f 7→?
β f (Y f)

The Y Combinator

The term we are looking for is called a fixed point combinator.
They are the way we achieve recursion in the λ-calculus.

Example (Recursive functions)
Exercise: Assuming a definition for Y, as well as If,Equal,Add and Suc,
define a recursive function to compute the sum of every natural number in
the interval [a, b].

To find Y, we can draw inspiration from our previous diverging example:

(λx . (x x)) (λx . (x x))

and define Y as follows:

Y ≡ (λf . (λx . f (x x)) (λx . f (x x)))

Exercise: Let’s demonstrate that Y g ≡β g (Y g)

Higher Order Logic

Originally, λ-calculus was intended for use as a term language for a logic,
called higher-order logic. The existence of terms like Y poses a problem for
this, as, for example:

Y ¬ ≡β ¬ (Y ¬)

It certainly isn’t good to have a logical term that is equal to its own
negation! Church solves this with types.

Adding Types
Fix a set of base types (nat, bool, etc.)
If σ and τ are types, then σ → τ is a type of a function from σ to τ .
Like Haskell, it is right-associative: σ → τ → ρ = σ → (τ → ρ)

A λ-abstraction now additionally specifies the type of the parameter:
λx : τ. t

Natural Deduction

Logic and Types
We can specify a logical system as a deductive system by providing a set of
rules and axioms that describe how to prove various connectives. We can
specify typing the same way!

For example, to prove a λ-abstraction λx : σ. t has type σ → τ , we must
show that the function body t has type τ assuming x has type σ. This rule
is written as:

x : σ, Γ ` t : τ

Γ ` (λx : σ. t) : σ → τ
→I

derivability
(if the top, then the bottom)

entailment
(assuming the left, we can prove the right)

Typing

The full set of rules for the simply typed λ-calculus is as follows:

x : τ ∈ Γ

Γ ` x : τ
A

x : σ, Γ ` t : τ

Γ ` (λx : σ. t) : σ → τ
→I

Γ ` t : σ → τ Γ ` u : σ

Γ ` t u : τ
→E

Example (Typing)
By drawing a proof tree, and assuming Add has type
nat→ nat→ nat, show that (λx : nat. Add x x) has type
nat→ nat

Show that our non-terminating term (λx . x x)(λx . x x) cannot be
typed. Similarly show that Y cannot be typed.

General Types

The most general type of a λ-term is the type that makes the least
assumptions, e.g., a generic type name τ is more general than nat,
since it is possible that τ = nat, but τ could also be something else.
Similarly, type α is more general than τ → τ . (Since α could be
anything, and need not be a function type.)
Similarly τ → τ ′ is more general than τ → nat or nat→ τ ′.
Similarly τ → τ ′ is more general than τ → τ , since τ ′ could be
different from τ .
The most general type can be found using the inference rules for
typing terms and using generic general type names in the base cases.

Some Results

Uniqueness of types In a given context (types for free variables), any
simply typed λ-terms has at most one type. Deciding this is
in P.

Subject reduction (type safety) Typing respects ≡αβη, i.e. reduction
does not affect a term’s type.

Strong normalisation Any well-typed term evaluates in finitely many
reductions to a unique irreducible term. If the type is a base
type, this term is a constant.

We lost recursion!
We have seen that Y cannot be typed, and strong normalisation means
that no such combinator could exist in simply typed λ-calculus.

Adding recursion back in

If we want to do general computation in our λ-calculus, we need recursion
back. So, we just extend the typed λ-calculus with a new built-in feature,
called fix:

Γ ` t : τ → τ

Γ ` fix t : τ

And we extend β-reduction to unroll our recursion one step:

fix (λx : τ. t) 7→β t[fix (λx :τ. t)/x]

Now we can use fix as we used Y in our untyped setting.

Total Programming
Some type-theoretic languages (Agda, Idris) avoid adding general recursion
to their underlying λ-calculus. Let’s talk about why they did that!

Product Types

Lets extend our simple lambda calculus with some other composite types,
such as product types or tuples:

τ1 × τ2
We won’t have type declarations, named fields or anything like that. More
than two values can be combined by nesting products, for example a three
dimensional vector:

nat× (nat× nat)

Constructors and Eliminators

We can construct a product type similarly to Haskell tuples:

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2
×I

The only way to extract each component of the product is to use the fst
and snd eliminators:

Γ ` e : τ1 × τ2
Γ ` fst e : τ1

×E1
Γ ` e : τ1 × τ2
Γ ` snd e : τ2

×E2

Semantics

We extend our notion of β-reduction to describe how these new built-in
features evaluate:

fst (v1, v2) 7→β v1 snd (v1, v2) 7→β v2

Unit Types

Currently, we have no way to express a type with just one value. This may
seem useless at first, but it becomes useful in combination with other types.
We’ll introduce a new base type, 1, pronounced unit, that has exactly one
inhabitant, written ():

Γ ` () : 1
1I

Disjunctive Composition

We can’t, with just our product types, express a type with exactly three
values.

Example (Trivalued type)
data TrafficLight = Red | Amber | Green

In general we want to express data that can be one of multiple alternatives,
that contain different bits of data.

Example (More elaborate alternatives)
type Length = Int
type Angle = Int
data Shape = Rect Length Length

| Circle Length | Point
| Triangle Angle Length Length

Sum Types

We will use sum types to express the possibility that data may be one of
two forms.

τ1 + τ2
This is similar to the Haskell Either type.
Our TrafficLight type can be expressed (grotesquely) as a sum of units:

TrafficLight ' 1 + (1 + 1)

Constructors and Eliminators for Sums

To make a value of type τ1 + τ2, we invoke one of two constructors:

Γ ` e : τ1

Γ ` InL e : τ1 + τ2
+I1

Γ ` e : τ2

Γ ` InR e : τ1 + τ2
+I2

We can branch based on which alternative is used using pattern matching:

Γ ` e : τ1 + τ2 x : τ1, Γ ` e1 : τ y : τ2, Γ ` e2 : τ

Γ ` (case e of InL x → e1; InR y → e2) : τ
+E

Examples

Example (Traffic Lights)
Our traffic light type has three values as required:

TrafficLight ' 1 + (1 + 1)

Red ' InL ()
Amber ' InR (InL ())
Green ' InR (InR ())

Semantics

(case (InL v) of InL x → e1; InR y → e2) 7→β e1[v/x]

(case (InR v) of InL x → e1; InR y → e2) 7→β e2[v/y]

The Empty Type

We add another type, called 0, that has no inhabitants. Because it is
empty, there is no way to construct it.
We do have a way to eliminate it, however:

Γ ` e : 0
Γ ` absurd e : τ

0E

If I have a variable of the empty type in scope, we must be looking at an
expression that will never be evaluated. Therefore, we can assign any type
we like to this expression, because it will never be executed.

Examining our Types

Lets look at the rules for typed lambda calculus extended with sums and
products:

Γ ` e : 0
Γ ` absurd e : τ Γ ` () : 1

Γ ` e : τ1

Γ ` InL e : τ1 + τ2

Γ ` e : τ2

Γ ` InR e : τ1 + τ2

Γ ` e : τ1 + τ2 x : τ1, Γ ` e1 : τ y : τ2, Γ ` e2 : τ

Γ ` (case e of InL x → e1; InR y → e2) : τ

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2
Γ ` e : τ1 × τ2
Γ ` fst e : τ1

Γ ` e : τ1 × τ2
Γ ` snd e : τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

x : τ1, Γ ` e : τ2

Γ ` λx . e : τ1 → τ2

Squinting a Little

Lets remove all the terms, leaving just the types and the contexts:

Γ ` 0
Γ ` τ Γ ` 1

Γ ` τ1
Γ ` τ1 + τ2

Γ ` τ2
Γ ` τ1 + τ2

Γ ` τ1 + τ2 τ1, Γ ` τ τ2, Γ ` τ
Γ ` τ

Γ ` τ1 Γ ` τ2
Γ ` τ1 × τ2

Γ ` τ1 × τ2
Γ ` τ1

Γ ` τ1 × τ2
Γ ` τ2

Γ ` τ1 → τ2 Γ ` τ1
Γ ` τ2

τ1, Γ ` τ2
Γ ` τ1 → τ2

Does this resemble anything you’ve seen before?

A surprising coincidence!
Types are exactly the same structure as intuitionistic logic:

Γ ` ⊥
Γ ` P Γ ` >

Γ ` P1

Γ ` P1 ∨ P2

Γ ` P2

Γ ` P1 ∨ P2

Γ ` P1 ∨ P2 P1, Γ ` P P2, Γ ` P

Γ ` P

Γ ` P1 Γ ` P2

Γ ` P1 ∧ P2

Γ ` P1 ∧ P2

Γ ` P1

Γ ` P1 ∧ P2

Γ ` P2

Γ ` P1 → P2 Γ ` P1

Γ ` P2

P1, Γ ` P2

Γ ` P1 → P2

This means, if we can construct a program of a certain type, we have also
created a constructive proof of a certain proposition.

The Curry-Howard Correspondence

This correspondence goes by many names, but is usually attributed to
Haskell Curry and William Howard.
It is a very deep result:

Programming Logic
Types Propositions

Programs Proofs
Evaluation Proof Simplification

It turns out, no matter what logic you want to define, there is always a
corresponding λ-calculus, and vice versa.

Constructive Logic Typed λ-Calculus
Classical Logic Continuations
Modal Logic Monads
Linear Logic Linear Types, Session Types

Separation Logic Region Types

Examples

Example (Commutativity of Conjunction)

andComm : A× B → B × A
andComm = λp. (snd p, fst p)

This proves A ∧ B → B ∧ A.

Example (Transitivity of Implication)

transitive : (A→ B)→ (B → C)→ (A→ C)
transitive = λf λg λx . g (f x)

Transitivity of implication is just function composition.

Caveats

All functions we define have to be total and terminating.
Otherwise we get an inconsistent logic that lets us prove false things:

proof 1 : P = NP
proof 1 = proof 1

proof 2 : P 6= NP
proof 2 = proof 2

This is why Agda and Idris avoid adding fix.
Most common calculi correspond to constructive logic, not classical ones,
so principles like the law of excluded middle or double negation elimination
do not hold:

¬¬P → P

	Recursion in -Calculus
	Type Theory

