
Introduction to Theoretical Computer Science
Lecture 18 [Not examinable]: Games

Richard Mayr

University of Edinburgh

Semester 1, 2025/2026

Logical Games

Consider a game played between two players, Abelard, written ∀
and Eloise, written ∃.
The game involves alternately choosing elements of a domain Ω.
As they choose, they produce a sequence of elements
a0, a1, a2, . . .

An infinite sequence of such elements is called a play. (w.l.o.g.
we generalise finite to infinite sequences)
There are disjoint setsW∃ andW∀, which contain the winning
plays for ∃ and ∀ respectively.
A logical game is total if all plays are inW∃ orW∀.
A logical game is well-founded if every play is determined to be in
W∃ orW∀ based on a finite prefix.
A logical game is finite if there is an n such that all plays are
determined to be inW∃ orW∀ based on a finite prefix of length n.

Winning Strategies
A logical game is determined if one or the other players have a winning
strategy.

Definition
A strategy for a player p is a function that maps any finite history of a
play to the next move of player p. A winning strategy for a player p
guarantees that, regardless of the moves of the other player, the
resulting play will be inWp.

Any problem in Σ0
n can be expressed as finding an ∃-winning strategy

for a finite game of length n (see lecture on the arithmetic hierarchy).

ϕ ≡ ∃x .∀y .∃z R(x , y , z , . . .)

∃-winning strategy: we have a proof of ϕ.
∀-winning strategy: we have a counterexample to ϕ.

Determined Games

Theorem
Every well-founded game is determined.

Suppose ∀ has no winning strategy for the game. That is, ∀ has no
winning strategy from the initial position of the game.
If ∀moves, then the next position must also give no winning
strategy, or there would have been a winning strategy from the
previous position.
If ∃moves, she must have a move that does not put ∀ into a
winning strategy, or otherwise the previous position would have a
∀-winning strategy.
Thus, inductively, the entire run will never put ∀ in a winning
position. Thus, ∃ has won.

Hintikka Games

Duality
The dual of a game G , written G , is the game where ∀ and ∃ are
transposed in both the rules for playing and for winning.

We can give a meaning to first-order logic using Hintikka games.
Define G [ϕ] for all first-order formulae ϕ:

G [∀x .P] = ∀ picks an x and the game proceeds as G [P].
G [∃x .P] = ∃ picks an x and the game proceeds as G [P].
G [P ∧ Q] = ∀ picks if the game proceeds as G [P] or G [Q].
G [P ∨ Q] = ∃ picks if the game proceeds as G [P] or G [Q].
G [¬P] = G [P]

> is winning for ∃. ⊥ is winning for ∀.
A formula ϕ holds iff ∃ has a winning strategy for G [ϕ].

Logics for Infinite Games

We can specify infinite (or unbounded) games using fixed-point logics.
There are a lot of subtleties here that I can talk about later if time.
For now, let’s just add a least fixed point formula construct [lfpR(~x).ϕ],
with the equivalence:

[lfpR(~x). ϕ](~y) ≡ ϕ

[
~y/~x

] [
[lfpR(~x). ϕ](~z)/R(~z)

]
Example
Given a graph consisting of a connectness predicate E (a, b), the
cycle-finding game can be stated as:

[lfpR(u,v). E (u, v) ∨ (∃w . E (u,w) ∧ R(w , v))]

Back and Forth Games

Back and forth games can be viewed as a game to construct a
comparison between two structures A and B .

The two players are called Spoiler and Duplicator.
S first picks an element of A.
D picks a “matching” element of B .
S wins if he picks an element that D cannot match.
D wins if she can continue matching S’s moves forever.

Simulation Games
Consider a traffic light system and its specification:

System

R A G

Spec

? G

Abstraction
Showing that the system meets the spec requires a simulation
relation: a winning strategy for a back and forth game where S picks
system moves and D picks matching spec moves.

Simulation Relations

Definition
A simulation of an automaton C by an automaton A is defined as a
relation S ⊆ QC × QA which satisfies:

If s S t then LC (s) = LA(t)

If s S t and s a−→ s ′ (with a ∈ ΣC , s ′ ∈ QC) then there exists a
t ′ ∈ QA such that t a−→ t ′ and s ′ R t ′.

The automaton A is an abstraction of the concrete automaton C iff a A
simulates C . This is sometimes written A v C .

Simulation relations are the foundation of abstraction – a key
technique in formal modelling and verification.

Model Equivalence

Question
When do two automata represent the same system?
hmm...

Is it (only) when A = B (graph isomorphism)?

a a a

Nope!

Tree Equivalence?

Is it (only) when the two automata have the same computation tree?

a

b

b

a b

Also no!

Bisimulations

Definition
A (strong) bisimulation between two automata A and B is defined as a
relationR ⊆ QA × QB which satisfies:

If s R t then LA(s) = LB(t)

If s R t and s a−→ s ′ (with a ∈ ΣA, s ′ ∈ QA) then there exists a
t ′ ∈ QB such that t a−→ t ′ and s ′ R t ′.
If s R t and t a−→ t ′ (with a ∈ ΣB , t ′ ∈ QB) then there exists a
s ′ ∈ QA such that s a−→ s ′ and s ′ R t ′.

Two automata are bisimulation equivalent or bisimilar iff there exists a
bisimulation between their initial states.

Let’s find bisimulations for the previous examples.

Bisimulation Games

We can turn our simulation games into bisimulation games by
allowing the locus of control to switch between the two players.

Bisimulation Games
S goes first and picks a move from either system A or system B .
If S picked a move from system A, D must pick a matching move
from system B , and vice versa.
Then, S picks another move...
If S can find a move that D cannot match, S wins.
D wins if it can match all moves selected by S.

Parity Games
Definition
A parity game is played between two players on a directed graph.
Player 0 chooses moves from circular nodes and Player 1 chooses for
square nodes. Player n wins an infinite play if the highest number
infinitely visited in the play ≡ n [mod 2].

Parity Games

Parity games can be used to give a model-checking algorithm for
a type of logic called modal µ-calculus, commonly used to
express properties of systems.
Validity and satisfiability for many other modal logics is reducible
to parity game solving.
Parity games are history-free determined.
Zielonka gives an algorithm for solving parity games.
Parity games are in NP ∩ coNP . Each player can guess his winning
strategy in polynomial time. It is then easy to check whether this
guess is winning.
Open question: Can parity games be solved in deterministic
polynomial time?
Some more recent results show quasi-polynomial time
O(2c log2(n)) [Calude et al.: 2017]

	Logical Games
	Back and Forth Games
	Parity Games

