Introduction to Theoretical Computer Science Lecture 18 [Not examinable]: Games

Richard Mayr

University of Edinburgh

Semester 1, 2025/2026

Logical Games

- Consider a game played between two players, Abelard, written ∀
 and Eloise, written ∃.
- The game involves alternately choosing elements of a domain Ω . As they choose, they produce a sequence of elements a_0, a_1, a_2, \dots
- An infinite sequence of such elements is called a play. (w.l.o.g. we generalise finite to infinite sequences)
- There are disjoint sets W_∃ and W_∀, which contain the winning plays for ∃ and ∀ respectively.
- A logical game is *total* if all plays are in W_{\exists} or W_{\forall} .
- A logical game is *well-founded* if every play is determined to be in \mathcal{W}_{\exists} or \mathcal{W}_{\forall} based on a finite prefix.
- A logical game is *finite* if there is an n such that all plays are determined to be in W_∃ or W_∀ based on a finite prefix of length n.

Winning Strategies

A logical game is <u>determined</u> if one or the other players have a <u>winning</u> <u>strategy</u>.

Definition

A *strategy* for a player p is a function that maps any finite history of a play to the next move of player p. A *winning strategy* for a player p guarantees that, *regardless of the moves of the other player*, the resulting play will be in W_p .

Any problem in Σ_n^0 can be expressed as finding an \exists -winning strategy for a finite game of length n (see lecture on the arithmetic hierarchy).

$$\varphi \equiv \exists x. \forall y. \exists z. \dots R(x, y, z, \dots)$$

 \exists -winning strategy: we have a proof of φ .

 \forall -winning strategy: we have a counterexample to φ .

Determined Games

Theorem

Every well-founded game is determined.

- Suppose \forall has no winning strategy for the game. That is, \forall has no winning strategy from the initial position of the game.
- If \(\psi\$ moves, then the next position must also give no winning strategy, or there would have been a winning strategy from the previous position.
- If ∃ moves, she must have a move that does not put ∀ into a winning strategy, or otherwise the previous position would have a ∀-winning strategy.
- Thus, inductively, the entire run will never put ∀ in a winning position. Thus, ∃ has won.

Hintikka Games

Duality

The <u>dual</u> of a game G, written \overline{G} , is the game where \forall and \exists are transposed in both the rules for playing and for winning.

We can give a meaning to first-order logic using *Hintikka games*. Define $G[\phi]$ for all first-order formulae ϕ :

- $G[\forall x.P] = \forall$ picks an x and the game proceeds as G[P].
- $G[\exists x.P] = \exists$ picks an x and the game proceeds as G[P].
- $G[P \land Q] = \forall$ picks if the game proceeds as G[P] or G[Q].
- $G[P \lor Q] = \exists$ picks if the game proceeds as G[P] or G[Q].
- $G[\neg P] = \overline{G[P]}$
- \top is winning for \exists . \bot is winning for \forall .

A formula φ holds iff \exists has a winning strategy for $G[\varphi]$.

Logics for Infinite Games

We can specify infinite (or unbounded) games using *fixed-point logics*. There are a lot of subtleties here that I can talk about later if time. For now, let's just add a *least fixed point* formula construct $[\mathbf{lfp}_{R(\vec{x})}.\phi]$, with the equivalence:

$$[\mathsf{Ifp}_{R(\vec{x})}, \varphi](\vec{y}) \quad \equiv \quad \varphi\left[\vec{y}/\vec{x}\right] \left[[\mathsf{Ifp}_{R(\vec{x})}, \varphi](\vec{z})/R(\vec{z}) \right]$$

Example

Given a graph consisting of a connectness predicate E(a, b), the cycle-finding game can be stated as:

[
$$\mathsf{Ifp}_{R(u,v)}$$
. $E(u,v) \vee (\exists w. E(u,w) \wedge R(w,v))$]

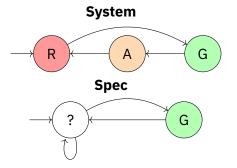
Back and Forth Games

Back and forth games can be viewed as a game to construct a comparison between two structures A and B.

- The two players are called **S**poiler and **D**uplicator.
- S first picks an element of A.
- **D** picks a "matching" element of *B*.
- **S** wins if he picks an element that **D** cannot match.
- D wins if she can continue matching S's moves forever.

Simulation Games

Consider a traffic light system and its specification:



Abstraction

Showing that the system meets the spec requires a *simulation relation*: a winning strategy for a back and forth game where **S** picks system moves and **D** picks matching spec moves.

Simulation Relations

Definition

A *simulation* of an automaton C by an automaton A is defined as a relation $S \subseteq Q_C \times Q_A$ which satisfies:

- If s S t then $L_C(s) = L_A(t)$
- If $s \, \mathcal{S} \, t$ and $s \xrightarrow{a} s'$ (with $a \in \Sigma_C, s' \in Q_C$) then there exists a $t' \in Q_A$ such that $t \xrightarrow{a} t'$ and $s' \, \mathcal{R} \, t'$.

The automaton A is an *abstraction* of the concrete automaton C iff a A simulates C. This is sometimes written $A \sqsubseteq C$.

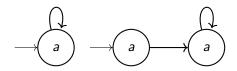
Simulation relations are the foundation of abstraction – a key technique in formal modelling and verification.

Model Equivalence

Question

When do two automata represent the same system? hmm...

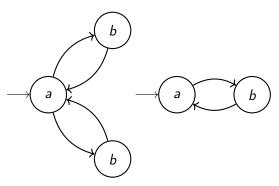
Is it (only) when A = B (graph isomorphism)?



Nope!

Tree Equivalence?

Is it (only) when the two automata have the same computation tree?



Also no!

Bisimulations

Definition

A (strong) bisimulation between two automata A and B is defined as a relation $\mathcal{R} \subseteq Q_A \times Q_B$ which satisfies:

- If $s \mathcal{R} t$ then $L_A(s) = L_B(t)$
- If $s \mathcal{R} t$ and $s \xrightarrow{a} s'$ (with $a \in \Sigma_A, s' \in Q_A$) then there exists a $t' \in Q_B$ such that $t \xrightarrow{a} t'$ and $s' \mathcal{R} t'$.
- If $s \mathcal{R} t$ and $t \xrightarrow{a} t'$ (with $a \in \Sigma_B, t' \in Q_B$) then there exists a $s' \in Q_A$ such that $s \xrightarrow{a} s'$ and $s' \mathcal{R} t'$.

Two automata are *bisimulation equivalent* or *bisimilar* iff there exists a bisimulation between their initial states.

Let's find bisimulations for the previous examples.

Bisimulation Games

We can turn our simulation games into bisimulation games by allowing the locus of control to switch between the two players.

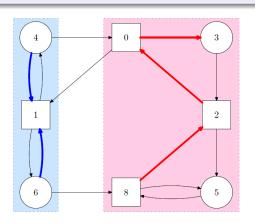
Bisimulation Games

- **S** goes first and picks a move from either system *A* or system *B*.
- If **S** picked a move from system *A*, **D** must pick a matching move from system *B*, and vice versa.
- Then, **S** picks another move...
- If S can find a move that D cannot match, S wins.
- D wins if it can match all moves selected by S.

Parity Games

Definition

A parity game is played between two players on a directed graph. Player 0 chooses moves from circular nodes and Player 1 chooses for square nodes. Player n wins an infinite play if the highest number infinitely visited in the play $\equiv n \pmod{2}$.



Parity Games

- Parity games can be used to give a model-checking algorithm for a type of logic called modal μ-calculus, commonly used to express properties of systems.
- Validity and satisfiability for many other modal logics is reducible to parity game solving.
- Parity games are history-free determined.
- Zielonka gives an algorithm for solving parity games.
- Parity games are in $NP \cap coNP$. Each player can guess his winning strategy in polynomial time. It is then easy to check whether this guess is winning.
- **Open question**: Can parity games be solved in deterministic polynomial time?
- Some more recent results show quasi-polynomial time $\mathcal{O}(2^{c \log^2(n)})$ [Calude et al.: 2017]