Introduction to Algorithms and Data Structures

Lecture 14: Graphs, BFS, DFS

Mary Cryan

School of Informatics University of Edinburgh

Directed and Undirected Graphs

▶ A graph is a mathematical structure consisting of a set of vertices and a set of edges connecting the vertices.

Formally: G = (V, E), where V is a set and $E \subseteq V \times V$.

▶ G = (V, E) undirected if for all $v, w \in V$:

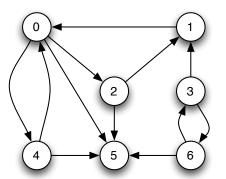
$$(v, w) \in E \iff (w, v) \in E$$
.

Otherwise directed.

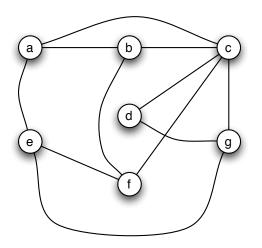
Directed ~ arrows (one-way) Undirected ~ lines (two-way)

A directed graph

$$G = (V, E)$$
 with vertex set $V = \{0, 1, 2, 3, 4, 5, 6\}$ and edge set
$$E = \{(0, 2), (0, 4), (0, 5), (1, 0), (2, 1), (2, 5), (3, 1), (3, 6), (4, 0), (4, 5), (6, 3), (6, 5)\}.$$



An undirected graph



Examples of graphs in "real life"

Road Maps.
Edges represent streets and vertices represent crossings.

IADS – Lecture 14 – slide 5

Examples (cont'd)

Computer Networks.

Vertices represent computers and edges represent network connections (cables) between them.

The World Wide Web.

Vertices represent webpages, and edges represent hyperlinks.

Adjacency matrices

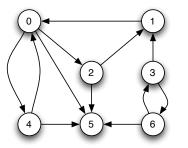
Let G = (V, E) be a graph with n vertices, with vertices numbered $0, \dots, n-1$.

The adjacency matrix of G is the $n \times n$ matrix $A = (a_{ij})_{0 \le i,j \le n-1}$ with

$$a_{ij} = \begin{cases} 1 & \text{if there is an edge from vertex } i \text{ to vertex } j \\ 0 & \text{otherwise.} \end{cases}$$

- Python arrays are a bit strange to work with, being set up as "lists of lists". Alternatives are:
 - ▶ Import numpy, and use their true 2D arrays
 - ▶ Define a mapping $(i,j) \rightarrow i * n + j$ (where n is the number of vertices) and work with a n * n or n * (n+1)/2 sized 1D array in python.

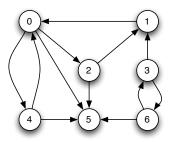
Adjacency matrix (Example)

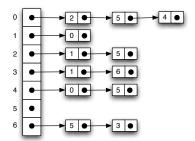


Adjacency lists

Array with one entry for each vertex v, which is a list of all vertices adjacent to v.

Example





Lists or matrices?

Given: graph G = (V, E), with n = |V|, m = |E|. For $v \in V$, we write in(v) for in-degree, out(v) for out-degree.

Which data structure has faster (asymptotic) worst-case running-time, for checking if w is adjacent to v, for a given pair of vertices?

- 1. Adjacency list is faster.
- 2. Adjacency matrix is faster.
- 3. Both have the same asymptotic worst-case running-time.
- 4. It depends.

Finding neighbours

Given: graph G=(V,E), with n=|V|, m=|E|. For $v\in V$, we write in(v) for in-degree, out(v) for out-degree.

Which data structure has faster (asymptotic) worst-case running-time, for visiting all vertices w adjacent to v, for a given vertex v?

- 1. Adjacency list is faster.
- 2. Adjacency matrix is faster.
- 3. Both have the same asymptotic worst-case running-time.
- 4. It depends.

Adjacency Matrices vs Adjacency Lists

	adjacency matrix	adjacency list
Space	$\Theta(n^2)$	$\Theta(n+m)$
Time to check if w adjacent to v	Θ(1)	$\Theta(out(v))$
Time to visit all w adjacent to v .	$\Theta(n)$	$\Theta(out(v))$
Time to visit all edges	$\Theta(n^2)$	$\Theta(n+m)$

Sparse and dense graphs

G = (V, E) graph with n vertices and m edges

Observation:

$$m \leq n^2$$

- ightharpoonup G dense if m close to n^2
- ▶ G sparse if m much smaller than n^2

Graph traversals

A traversal is a strategy for visiting all vertices of a graph.

$$BFS = breadth-first\ search$$

$$DFS = depth-first\ search$$

General strategy:

- 1. Let v be an arbitrary vertex
- 2. Visit all vertices reachable from v
- 3. If there are vertices that have not been visited, let v be such a vertex and go back to 2.

BFS

Visit all vertices reachable from v in the following order:

- V
- ▶ all neighbours of *v*
- ▶ all neighbours of neighbours of v that have not been visited yet
- ▶ all neighbours of neighbours of v that have not been visited yet
- etc.

BFS (using a Queue)

Algorithm bfs(G)

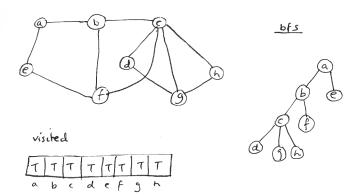
- 1. Initialise Boolean array *visited*, setting all entries to FALSE.
- 2. Initialise Queue Q
- 3. for all $v \in V$ do
- 4. **if** visited[v] = FALSE **then**
- 5. bfsFromVertex(G, v)

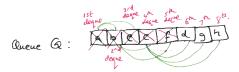
BFS (using a Queue)

Algorithm bfsFromVertex(G, v)

- 1. visited[v] = TRUE
- 2. Q.enqueue(v)
- 3. **while not** *Q*.isEmpty() **do**
- 4. $v \leftarrow Q.dequeue()$
- 5. **for all** w adjacent to v **do**
- 6. **if** visited[w] = FALSE **then**
- 7. visited[w] = TRUE
- 8. Q.enqueue(w)

BFS worked example





IADS - Lecture 14 - slide 18

Asymptotic running-time of BFS

Given a graph G = (V, E) with n = |V|, m = |E|, what is the worst-case running time of BFS, in terms of m, n?

- 1. $\Theta(m+n)$
- 2. $\Theta(n^2)$
- 3. $\Theta(mn)$
- 4. Depends on the number of components.

DFS

Visit all vertices reachable from v in the following order:

- ► v
- some neighbor w of v that has not been visited yet
- some neighbor x of w that has not been visited yet
- ▶ etc., until the current vertex has no neighbour that has not been visited yet
- \triangleright Backtrack to the first vertex that has a yet unvisited neighbour v'.
- Continue with v', a neighbour, a neighbour of the neighbour, etc., backtrack, etc.

DFS (using a stack)

Algorithm dfs(G)

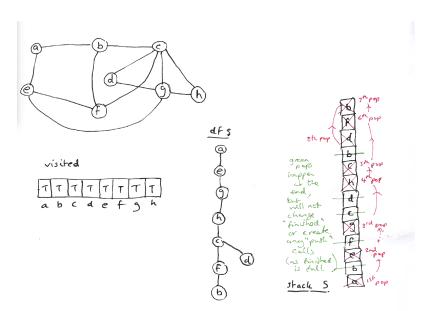
- 1. Initialise Boolean array *visited*, setting all to FALSE
- 2. Initialise Stack S
- 3. for all $v \in V$ do
- 4. **if** visited[v] = FALSE **then**
- 5. dfsFromVertex(G, v)

DFS (using a stack)

Algorithm dfsFromVertex(G, v)

- 1. *S*.push(*v*)
- 2. **while not** *S*.isEmpty() **do**
- 3. $u \leftarrow S.pop()$
- 4. **if** visited[u] = FALSE **then**
- 5. $visited[u] \leftarrow TRUE$
- 6. **for all** w adjacent to u **do**
- 7. **if** visited[w] = FALSE **then**
- 8. S.push(w)

DFS worked example



IADS - Lecture 14 - slide 23

Reading

Today's lecture:

- Graph representations in Section 22.1
- ▶ Breadth-first search Section 22.2

Thursday:

- ▶ Depth-first search Section 22.3
- ► Topological sort Section 22.4