Introduction to Algorithms and Data Structures

Lecture 15: DFS and graph structure

Mary Cryan

School of Informatics
University of Edinburgh

IADS — Lecture 15 — slide 1

DFS (using a stack)

Algorithm dfs(G)

Initialise Boolean array visited, setting all to FALSE
Initialise Stack S
for all v € V do
if visited[v] = FALSE then
dfsFromVertex(G, v)

AN

IADS — Lecture 15 — slide 2

DFS (using a stack)

Algorithm dfsFromVertex(G, v)

S.push(v)
while not S.isEmpty() do
u + S.pop()
if visited[u] = FALSE then

for all w adjacent to v do
if visited|w] = FALSE then

1
2
3
4
5. visited[u] &< TRUE
6
7
8 S.push(w)

IADS — Lecture 15 — slide 3

DFS worked example

visihed IE

A [[r[T] i} ES

abcde g h pelPes
chen

“hnd o

o creake A
< PEPMIS O B
ey LN e
@ (e Binghed \
£ AL 7
sk
Jl’AclL S Feep

IADS — Lecture 15 — slide 4

Recursive DFS (no explicit Stack)

Algorithm dfs(G)

1. Initialise Boolean array wvisited, setting all entries to FALSE
2. for all v € V do

3. if visited[v] = FALSE then

4 dfsFromVertex(G, v)

Algorithm dfsFromVertex(G, v)

1. wisited[v] < TRUE

2. for all w adjacent to v do

3. if visited[w] = FALSE then
4 dfsFromVertex(G, w)

(We will have reversed prioritisation of the vertices adjacent to v, compared to
the Stack version)

IADS — Lecture 15 — slide 5

Analysis of Recursive DFS

Lemma
During dfs(G), dfsFromVertex(G, v) is invoked exactly once for each vertex v.

Proof.

At least once:
» wuisited[v] can only become TRUE when dfsFromVertex(G, v) is executed.

» If visited[v] remains FALSE, dfsFromVertex(G, v) will eventually be called
by line 4 of dfs(G).

At most once:
» First call of dfsFromVertex(G, v) sets visited[v] to TRUE.

» After visited[v] is TRUE, dfsFromVertex(G, v) is never called again.

(“At most once” is also true for Stack dfs, but “at least once” is not.
dfsFromVertex" is more to "start a component” in the Stack version)

IADS — Lecture 15 — slide 6

Analysis of recursive DFS (cont'd)

Lemma
For a directed graph,) ., out-degree(v) = m.
For an undirected graph, }_ ., deg(v) =2m.

Proof.

Every edge is counted exactly once on both sides of the equation (for directed).

For the undirected case, every edge is counted twice on the lhs. O

IADS — Lecture 15 — slide 7

Analysis of recursive DFS

G = (V, E) graph with n vertices and m edges
Algorithm dfs(G)

1. Initialise Boolean array wvisited, setting all to FALSE
2. for all v € V do

3. if visited|v] = FALSE then

4 dfsFromVertex(G, v)

» dfs(G): Ignoring calls to dfsFromVertex, total time ©(n)

» dfsFromVertex(v) is called at most once for every vertex v, and does
O(out-degree(v)) work, excluding recursive calls.

Overall time:
T(nym) = ©O(n)+) ., O(out-degree(v))
@(n +2 ey out—degree(v))
= O(n+m)

IADS — Lecture 15 — slide 8

Adjacency List or Adjacency Matrix?

We said each call to dfsFromVertex(v) takes O(out-degree(v)) time (excluding
recursive calls).

Algorithm dfsFromVertex(G, v)

1. wisited|[v] «+ TRUE

2. for all w adjacent to v do

3. if visited[w] = FALSE then
4, dfsFromVertex (G, w)

If we are iterating over “all w adjacent to v" in ®(out-degree(v)) time, then we
must be using an Adjacency list structure.

IADS — Lecture 15 — slide 9

Analysis of Stack DFS

Compare the two dfsFromVertex(G, v) methods:

Algorithm dfsFromVertex(G, v) Algorithm dfsFromVertex(G, v)

1. wisited[v] « TRUE 1. S.push(v)

2. for all w adjacent to v do 2. while not S.isEmpty() do

3. if visited[w] = FALSE then 3 u — S.pop()

4 dfsFromVertex(G, w) 4 if visited[u] = FALSE then
5. visited[u] ¢~ TRUE
6 for all w adjacent to u do
7 if visited[w] = FALSE then
8 S.push(w)

| visited[w] «— TRUE | < | u« S.pop(); visited[u] < TRUE;

Recursive: marks v as "visited”, then calls dfsFromVertex for unvisited adjacent vertices
Iterative: “pops” v off top to mark as "visited” and explore/push adjacent vertices.

However, the number of Stack operations for v is bounded in terms of the number of
edges into v = the overall runtime for our original dfs is still ©(n+ m).

IADS — Lecture 15 — slide 10

DFS Forests

A DFS traversing a graph builds up a forest whose vertices are all vertices of the
graph and whose edges are all vertices traversed during the DFS.

Definition
(in recursive DFS) a vertex w is a child of a vertex v in the DFS forest if
dfsFromVertex(G, w) is called from dfsFromVertex(G, v).

IADS — Lecture 15 — slide 11

DFS Forests Example

©

On directed graphs, the connected components (trees) might vary depending on
the order in which we consider vertices at the top-level of dfs.

IADS — Lecture 15 — slide 12

Topological Sorting

Example:
10 tasks to be carried out. Some of them depend on others.

vV vV vV vV VvV vV VY

Task 0 must be completed before Task 1 can be started.
Task 1 and Task 2 must be done before Task 3 can start.
Task 4 must be done before Task 0 or Task 2 can start.
Task 5 must be done before Task 0 or Task 4 can start.
Task 6 must be done before Task 4, 5 or 7 can start.
Task 7 must be done before Task 0 or Task 9 can start.
Task 8 must be done before Task 7 or Task 9 can start.

Task 9 must be done before Task 2 or Task 3 can start.

IADS — Lecture 15 — slide 13

Topological order

Definition
Let G = (V, E) be a directed graph. A topological order of G is a total order <
of the vertex set V such that for all edges (v, w) € E we have v < w.

(in some fields this is called a linear extension)

IADS — Lecture 15 — slide 14

Tasks as a (directed) graph

Does this graph have a topological order?
Yes. One topological sort is:
8<6<7<9<5<4<2<0<1=<3.

IADS — Lecture 15 — slide 15

Topological order (cont'd)

A digraph that has a cycle does not have a topological order.

Definition
A DAG (directed acyclic graph) is a digraph without cycles.

Theorem
A digraph has a topological order if and only if it is a DAG.

IADS — Lecture 15 — slide 16

Classification of vertices during recursive DFS
G = (V,E) graph, v € V. Consider dfs(G).
» v is finished if dfsFromVertex(G, v) has been completed.

Vertices can be in the following states:

> not yet visited (let us call a vertex in this state white),
» visited, but not yet finished (grey).
» finished (black).

(note these colours are explicitly marked in version of DFS by [CLRS] 22.3)

IADS — Lecture 15 — slide 17

Classification of vertices during recursive DFS (cont’d)

Lemma
Let G be a graph and v a vertex of G. Consider the moment during the

execution of dfs(G) when dfsFromVertex(G, v) is started.
Then for all vertices w we have:

1. If w is white and reachable from v, then w will be black before v.

2. If w is grey, then v is reachable from w.

IADS — Lecture 15 — slide 18

Topological sorting

G = (V, E) digraph. Define order on V as follows:

v < w &= w becomes black before v.

Theorem
If G is a DAG then < is a topological order.

Proof.
Suppose (v,w) € E. Consider dfsFromVertex(G, v).

» If wis already black, then v < w (and this is what we want).

» |If w is white, then by Lemma part 1., w will be black before v. Thus
v < w.

» If wis grey, then by Lemma part 2. v is reachable from w. So there is a
path p from w to v. Path p and edge (v, w) together form a cycle.
Contradiction! (G is acyclic ...)

|
IADS — Lecture 15 — slide 19

Topological sorting implemented

Algorithm topSort(G)

1. Initialise array state
by setting all entries to white.

2. Initialise linked list L

3. forall ve Vdo

4, if state[v] = white then
5 sortFromVertex(G, v)
6. print L

IADS — Lecture 15 — slide 20

Topological sorting implemented

Algorithm sortFromVertex(G, v)

state[v] « grey
for all w adjacent to v do
if state[w] = white then
sortFromVertex(G, w)
else if state[w] = grey then
print “G has a cycle”
halt
state[v] « black
L.insertFirst(v)

© 0N gk Wb

Difference from dfs itself - the order the vertices get added to the list.

Running-time is again ©(n + m)

IADS — Lecture 15 — slide 21

Example

Use the algorithm topSort to compute a topological sort of this graph.
IADS — Lecture 15 — slide 22

Connected components of an undirected graph

G = (V, E) undirected graph
Definition
» A subset C of V is connected if for all v,w € C there is a path from v
to w (if G is directed, say strongly connected).

» A connected component of G is a maximum connected subset C of V.
(no connected subset C’ of V strictly contains C.

» G is connected if it only has one connected component, that is, if for all
vertices v, w there is a path from v to w.

IADS — Lecture 15 — slide 23

Connected components - undirected (cont'd)

» Each vertex of an undirected graph is contained in exactly one connected
component.

» For each vertex v of an undirected graph, the connected component that
contains v is precisely the set of all vertices that are reachable from v.

For an undirected graph G, dfsFromVertex(G, v) visits exactly the vertices in the
connected component of v.

And the same is true for bfsFromVertex(G, v) (either will do!)

IADS — Lecture 15 — slide 24

Connected components - undirected (cont'd)

Algorithm connComp(G)

1. Initialise Boolean array wvisited
by setting all entries to FALSE

2. forall ve V do

3. if visited[v] = FALSE then
4, print “New Component”
5. ccFromVertex(G, v)

Algorithm ccFromVertex(G, v)

1. wisited[v] ¢+~ TRUE

2. print v

3. for all w adjacent to v do

4, if visited|w] = FALSE then
5. ccFromVertex(G, w)

IADS — Lecture 15 — slide 25

Reading

From [CLRS]:
» Depth-first search - Section 22.3

» Computing topological sort - Section 22.4

From “Algorithms Illuminated”:

> sections 8.3, 8.4, 8.5

Hope you get a break over the holidays!

IADS — Lecture 15 — slide 26

