Introduction to Algorithms and Data Structures

Lecture 15: DFS and graph structure

Mary Cryan

School of Informatics University of Edinburgh

DFS (using a stack)

Algorithm dfs(G)

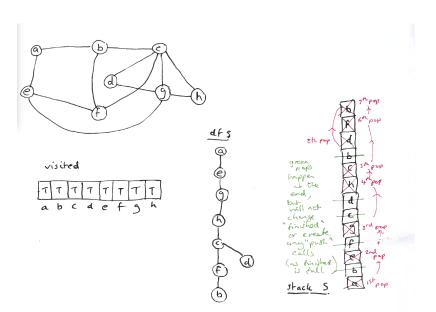
- 1. Initialise Boolean array *visited*, setting all to FALSE
- 2. Initialise Stack S
- 3. for all $v \in V$ do
- 4. **if** visited[v] = FALSE **then**
- 5. dfsFromVertex(G, v)

DFS (using a stack)

Algorithm dfsFromVertex(G, v)

- 1. *S*.push(*v*)
- 2. while not S.isEmpty() do
- 3. $u \leftarrow S.pop()$
- 4. **if** visited[u] = FALSE **then**
- 5. $visited[u] \leftarrow TRUE$
- 6. **for all** w adjacent to u **do**
- 7. **if** visited[w] = FALSE **then**
- 8. S.push(w)

DFS worked example



IADS - Lecture 15 - slide 4

Recursive DFS (no explicit Stack)

Algorithm dfs(G)

- 1. Initialise Boolean array *visited*, setting all entries to FALSE
- 2. for all $v \in V$ do
- 3. **if** visited[v] = FALSE **then**
- 4. dfsFromVertex(G, v)

Algorithm dfsFromVertex(G, v)

- 1. $visited[v] \leftarrow TRUE$
- 2. **for all** w adjacent to v **do**
- 3. **if** visited[w] = FALSE **then**
- 4. dfsFromVertex(G, w)

(We will have reversed prioritisation of the vertices adjacent to v, compared to the Stack version)

Analysis of Recursive DFS

Lemma

During dfs(G), dfsFromVertex(G, v) is invoked exactly once for each vertex v.

Proof.

At least once:

- ightharpoonup visited[v] can only become TRUE when dfsFromVertex(G, v) is executed.
- ▶ If visited[v] remains FALSE, dfsFromVertex(G, v) will eventually be called by line 4 of dfs(G).

At most once:

- ▶ First call of dfsFromVertex(G, v) sets visited[v] to TRUE.
- ▶ After visited[v] is TRUE, dfsFromVertex(G, v) is never called again.

("At most once" is also true for Stack dfs, but "at least once" is not. dfsFromVertex" is more to "start a component" in the Stack version)

IADS - Lecture 15 - slide 6

Analysis of recursive DFS (cont'd)

Lemma

For a directed graph, $\sum_{v \in V}$ out-degree(v) = m. For an undirected graph, $\sum_{v \in V} deg(v) = 2m$.

Proof.

Every edge is counted exactly once on both sides of the equation (for directed).

For the undirected case, every edge is counted twice on the lhs.

Analysis of recursive DFS

G = (V, E) graph with n vertices and m edges

Algorithm dfs(G)

- 1. Initialise Boolean array *visited*, setting all to FALSE
- 2. for all $v \in V$ do
- 3. **if** visited[v] = FALSE **then**
- 4. dfsFromVertex(G, v)
- ▶ dfs(G): Ignoring calls to dfsFromVertex, total time $\Theta(n)$
- ▶ dfsFromVertex(v) is called at most once for every vertex v, and does $\Theta(\text{out-degree}(v))$ work, excluding recursive calls.

Overall time:

$$T(n,m) = \Theta(n) + \sum_{v \in V} \Theta(\text{out-degree}(v))$$

$$= \Theta\left(n + \sum_{v \in V} \text{out-degree}(v)\right)$$

$$= \Theta(n+m)$$

Adjacency List or Adjacency Matrix?

We said each call to dfsFromVertex(v) takes $\Theta(\text{out-degree}(v))$ time (excluding recursive calls).

Algorithm dfsFromVertex(G, v)

- 1. $visited[v] \leftarrow TRUE$
- 2. **for all** w adjacent to v **do**
- 3. **if** visited[w] = FALSE **then**
- 4. dfsFromVertex(G, w)

If we are iterating over "all w adjacent to v" in $\Theta(\text{out-degree}(v))$ time, then we must be using an Adjacency list structure.

Analysis of Stack DFS

Compare the two dfsFromVertex(G, v) methods:

```
Algorithm dfsFromVertex(G, v)
```

- 1. $visited[v] \leftarrow TRUE$
- 2. for all w adjacent to v do
- 3. **if** visited[w] = FALSE **then**
- 4. $\mathsf{dfsFromVertex}(G, w)$

Algorithm dfsFromVertex(G, v)

- 1. *S*.push(*v*)
- while not S.isEmpty() do
- 3. $u \leftarrow S.pop()$
 - if visited[u] = FALSE then
- 5. $visited[u] \leftarrow \text{TRUE}$
- 6. **for all** w adjacent to u **do**
- 7. **if** visited[w] = FALSE **then**
- 8. S.push(w)

```
| \textit{visited}[w] \leftarrow \text{TRUE} | \leftrightarrow | u \leftarrow S.pop(); \textit{visited}[u] \leftarrow \text{TRUE}; |
```

Recursive: marks \emph{v} as "visited", \emph{then} calls dfsFromVertex for unvisited adjacent vertices

4.

Iterative: "pops" v off top to mark as "visited" and explore/push adjacent vertices.

However, the number of Stack operations for v is bounded in terms of the number of edges into $v \Rightarrow$ the overall runtime for our original dfs is still $\Theta(n+m)$.

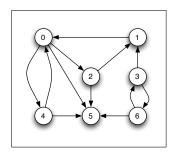
DFS Forests

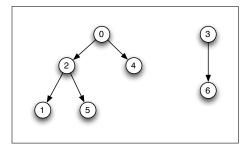
A DFS traversing a graph builds up a forest whose vertices are all vertices of the graph and whose edges are all vertices traversed during the DFS.

Definition

(in recursive DFS) a vertex w is a *child* of a vertex v in the DFS forest if dfsFromVertex(G, w) is called from dfsFromVertex(G, v).

DFS Forests Example





On directed graphs, the connected components (trees) might vary depending on the order in which we consider vertices at the top-level of dfs.

Topological Sorting

Example:

10 tasks to be carried out. Some of them depend on others.

- ► Task 0 must be completed before Task 1 can be started.
- ► Task 1 and Task 2 must be done before Task 3 can start.
- ▶ Task 4 must be done before Task 0 or Task 2 can start.
- ▶ Task 5 must be done before Task 0 or Task 4 can start.
- ▶ Task 6 must be done before Task 4, 5 or 7 can start.
- ▶ Task 7 must be done before Task 0 or Task 9 can start.
- Task 8 must be done before Task 7 or Task 9 can start.
- Task 9 must be done before Task 2 or Task 3 can start.

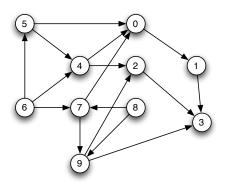
Topological order

Definition

Let G = (V, E) be a directed graph. A *topological order* of G is a total order \prec of the vertex set V such that for all edges $(v, w) \in E$ we have $v \prec w$.

(in some fields this is called a *linear extension*)

Tasks as a (directed) graph



Does this graph have a topological order?

Yes. One topological sort is:

$$8 \prec 6 \prec 7 \prec 9 \prec 5 \prec 4 \prec 2 \prec 0 \prec 1 \prec 3$$
.

IADS - Lecture 15 - slide 15

Topological order (cont'd)

A digraph that has a cycle does not have a topological order.

Definition

A DAG (directed acyclic graph) is a digraph without cycles.

Theorem

A digraph has a topological order if and only if it is a DAG.

Classification of vertices during recursive DFS

G = (V, E) graph, $v \in V$. Consider dfs(G).

 \triangleright v is finished if dfsFromVertex(G, v) has been completed.

Vertices can be in the following states:

- not yet visited (let us call a vertex in this state white),
- visited, but not yet finished (grey).
- ▶ finished (black).

(note these colours are explicitly marked in version of DFS by [CLRS] 22.3)

Classification of vertices during recursive DFS (cont'd)

Lemma

Let G be a graph and v a vertex of G. Consider the moment during the execution of dfs(G) when dfsFromVertex(G, v) is started.

Then for all vertices w we have:

- 1. If w is white and reachable from v, then w will be black before v.
- 2. If w is grey, then v is reachable from w.

Topological sorting

G = (V, E) digraph. Define order on V as follows:

 $v \prec w \iff w$ becomes black before v.

Theorem

If G is a DAG then \prec is a topological order.

Proof.

Suppose $(v, w) \in E$. Consider dfsFromVertex(G, v).

- ▶ If w is already black, then $v \prec w$ (and this is what we want).
- If w is white, then by Lemma part 1., w will be black before v. Thus $v \prec w$.
- ► If w is grey, then by Lemma part 2. v is reachable from w. So there is a path p from w to v. Path p and edge (v, w) together form a cycle.
 Contradiction! (G is acyclic ...)

Topological sorting implemented

Algorithm topSort(G)

- 1. Initialise array state by setting all entries to white.
- 2. Initialise linked list L
- 3. for all $v \in V$ do
- 4. **if** state[v] = white **then**
- 5. $\operatorname{sortFromVertex}(G, v)$
- 6. print L

Topological sorting implemented

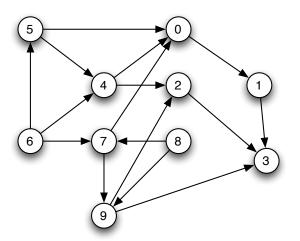
Algorithm sortFromVertex(G, v)

- 1. $state[v] \leftarrow grey$
- 2. for all w adjacent to v do
- 3. **if** state[w] = white **then**
- 4. $\operatorname{sortFromVertex}(G, w)$
- 5. **else if** state[w] = grey **then**
- 6. **print** "G has a cycle"
- 7. halt
- 8. $state[v] \leftarrow black$
- L.insertFirst(v)

Difference from dfs itself - the order the vertices get added to the list.

Running-time is again $\Theta(n+m)$

Example



Use the algorithm topSort to compute a topological sort of this graph.

IADS - Lecture 15 - slide 22

Connected components of an undirected graph

G = (V, E) undirected graph

Definition

- A subset C of V is connected if for all $v, w \in C$ there is a path from v to w (if G is directed, say strongly connected).
- ► A connected component of G is a maximum connected subset C of V. (no connected subset C' of V strictly contains C.
- ► *G* is *connected* if it only has one connected component, that is, if for all vertices *v*, *w* there is a path from *v* to *w*.

Connected components - undirected (cont'd)

- Each vertex of an undirected graph is contained in exactly one connected component.
- ► For each vertex *v* of an undirected graph, the connected component that contains *v* is precisely the set of all vertices that are reachable from *v*.

For an undirected graph G, dfsFromVertex(G, v) visits exactly the vertices in the connected component of v.

And the same is true for bfsFromVertex(G, v) (either will do!)

Connected components - undirected (cont'd)

Algorithm connComp(*G*)

- 1. Initialise Boolean array *visited* by setting all entries to FALSE
- 2. for all $v \in V$ do
- 3. **if** visited[v] = FALSE **then**
- 4. **print** "New Component"
- 5. $\operatorname{ccFromVertex}(G, v)$

Algorithm ccFromVertex(G, v)

- 1. $visited[v] \leftarrow TRUE$
- 2. print v
- 3. for all w adjacent to v do
- 4. **if** visited[w] = FALSE **then**
- 5. $\operatorname{ccFromVertex}(G, w)$

Reading

From [CLRS]:

- Depth-first search Section 22.3
- Computing topological sort Section 22.4

From "Algorithms Illuminated":

sections 8.3, 8.4, 8.5

Hope you get a break over the holidays!