
Introduction to Theoretical Computer Science

Exercise Sheet: Week 8 — Solutions

(1) The VERTEX-COVER problem: Given a graph G = (V,E), a vertex
cover is a subset V ′ ⊆ V of the vertices such that every edge has at least
one end in the cover V ′. VERTEX-COVER is, given a graph G and an
integer k, does G have a vertex cover of size k?

Give reductions from CLIQUE to VERTEX-COVER, and the other
way round. (Hint: complementary graph.)

To reduce a clique problem to a vertex cover problem: given G =
(V,E), construct the complementary graph G = (V, (V × V ) \E). If G
has a k-clique C, then the vertices in C have no edges between them,
and so every edge must touch V \C, giving an (n−k)-cover. Conversely,
if G has an (n − k)-cover C ′, then there can be no edge between two
vertices in V \C ′, and so G has it a k-clique. The reduction also works
the other way, of course.

(2) The following properties were mentioned in the lectures (with only brief
explanations):
• PSpace ⊇ PTime
• PSpace ⊇ NPTime
• PSpace ⊆ ExpTime

Write out explanations in enough detail to show how a proof would work.
A PTime machine can clearly only consume P-much space, since in

one instruction it can at most add one bit to the size of a register. For
an NPTime machine, you can just loop through all the (exponentially
many) possibilities, only using PSpace for each one, and polynomial
space to keep track of the possibilities. Given a PSpace machine, if it
runs for more than exponentially much time, it must be in a loop (since
there are 2poly possible configurations of the machine).

(3) PNP obviously includes all of NP and co-NP. So how does NPNP differ
from it – what else is there? (Assuming, that is, that P 6= NP.)

A naive way to put it is that with PNP, you get to ask a polynomial
number of NP questions, but with NPNP you can non-determistically
ask ‘exponentially many’ such questions.

However, exponentially many calls to an exponentially powerful ora-
cle is still only exponential. So what gives?

The basic answer is that thinking of NP as being exponentially pow-
erful is only a very crude heuristic, and my ‘explanation’ is therefore
very crude also. Remember: for all we know, NP might actually be P.

Remember also that we know that the entire polynomial hierarchy is
inside PSpace, which is inside ExpTime. So actually, NPNP is only
exponential, and so is NPNPNP

and so on.
So a more refined answer would be: We believe that NP lets you

do some amount of work, lets call it ‘lots of ’ work, which is more

1



than polynomially much work, but (much) less than exponentially much
work. So PNP lets you make poly-many calls to lots of work; while
NPNP lets you make lots of calls to lots of work. And it is reasonable
that lots of lots is more than lots.

(It needn’t be – as far as we know, it is possible that NP is more
than P, but that NPNP is in fact the same as PNP.)

2


