Introduction to Theoretical Computer Science

Exercise Sheet: Week 8 — Solutions

(1) The VERTEX-COVER problem: Given a graph G = (V, E), a vertex cover is a subset $V' \subseteq V$ of the vertices such that every edge has at least one end in the cover V'. VERTEX-COVER is, given a graph G and an integer k, does G have a vertex cover of size k?

Give reductions from CLIQUE to VERTEX-COVER, and the other way round. (*Hint:* complementary graph.)

To reduce a clique problem to a vertex cover problem: given G = (V, E), construct the complementary graph $\overline{G} = (V, (V \times V) \setminus E)$. If G has a k-clique C, then the vertices in C have no edges between them, and so every edge must touch $V \setminus C$, giving an (n-k)-cover. Conversely, if \overline{G} has an (n-k)-cover C', then there can be no edge between two vertices in $V \setminus C'$, and so G has it a k-clique. The reduction also works the other way, of course.

- (2) The following properties were mentioned in the lectures (with only brief explanations):
 - PSPACE \supset PTIME
 - PSPACE \supset NPTIME
 - PSPACE ⊂ EXPTIME

Write out explanations in enough detail to show how a proof would work.

A PTIME machine can clearly only consume P-much space, since in one instruction it can at most add one bit to the size of a register. For an NPTIME machine, you can just loop through all the (exponentially many) possibilities, only using PSPACE for each one, and polynomial space to keep track of the possibilities. Given a PSPACE machine, if it runs for more than exponentially much time, it must be in a loop (since there are 2^{poly} possible configurations of the machine).

(3) P^{NP} obviously includes all of NP and co-NP. So how does NP^{NP} differ from it – what else is there? (Assuming, that is, that $P \neq NP$.)

A naive way to put it is that with P^{NP}, you get to ask a polynomial number of NP questions, but with NP^{NP} you can non-determistically ask 'exponentially many' such questions.

However, exponentially many calls to an exponentially powerful oracle is still only exponential. So what gives?

The basic answer is that thinking of NP as being exponentially powerful is only a very crude heuristic, and my 'explanation' is therefore very crude also. Remember: for all we know, NP might actually be P.

Remember also that we know that the entire polynomial hierarchy is inside PSPACE, which is inside ExpTime. So actually, NP^{NP} is only exponential, and so is $NP^{NP^{NP}}$ and so on.

So a more refined answer would be: We believe that NP lets you do some amount of work, lets call it 'lots of' work, which is more

than polynomially much work, but (much) less than exponentially much work. So P^{NP} lets you make poly-many calls to lots of work; while NP^{NP} lets you make lots of calls to lots of work. And it is reasonable that lots of lots is more than lots.

(It needn't be – as far as we know, it is possible that NP is more than P, but that NP^{NP} is in fact the same as P^{NP} .)