

Text Technologies for Data Science INFR11145

Comparing Text Corpora

Instructor: **Björn Ross**

29-Oct-2025

1

Pre-Lecture

of EDINBURGH

- Today
 - Lecture: Comparing Text Corpora 1 & 2
 - Lab 6
- 5 November
 - Lecture: Web Search 1 & 2

Initial Text Analysis

- Scenario: you are given access to a new dataset
 - 2 corpora, each contains thousands of plain text files
 - You want to <u>understand</u> and <u>quantify</u>:
 - What is the content of these documents? What are they about?
 - How does the content of these corpora differ?
- What are some things you might try first?

Björn Ross, TTDS 2025/2026

3

Initial Text Analysis

- Scenario: you are given access to a new dataset
 - 2 corpora, each contains thousands of plain text files
 - You want to <u>understand</u> and <u>quantify</u>:
 - What is the content of these documents? What are they about?
 - · How does the content of these corpora differ?
- What are some things you might try first?
 - Read some examples
 - Language identification
 - Compute basic statistics:
 - Number of words, most frequent words, avg. words per document, ...
 - Build word clouds
 - ...

THE UNIVERSITY of EDINBURGH

Björn Ross, TTDS 2025/2026

Л

Why not just ask Al?

Björn Ross, TTDS 2025/2026

THE UNIVERSITY
of EDINBURGH

5

Lecture Objectives

- Analyze text corpora systematically
 - · Content analysis background
 - Word-level differences
 - · Dictionaries and Lexicons
 - Topic modeling
 - Annotation + classification

THE UNIVERSITY of EDINBURGH

Björn Ross, TTDS 2025/2026

Content Analysis

- Goal: given some documents determine
 - What are the types of content present? (themes/topics)
 - Which documents contain which topics?
- Traditionally a manual process
 - 1. Read a subset of documents, define themes/topics
 - 2. Determine consistent coding* methodology
 - 3. Read all documents and label them according to codes
 - 4. Check agreement between human coders
 - 5. Settle disagreements via a third-party
 - 6. Analyze resulting annotations

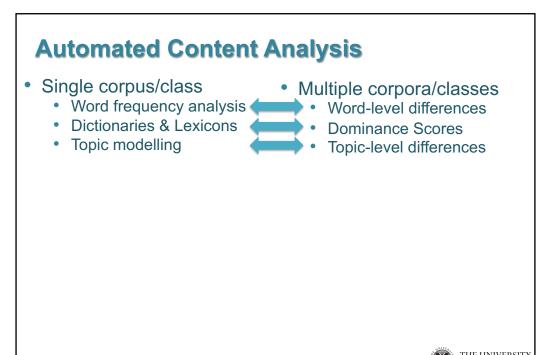
THE UNIVERSITY of EDINBURGH

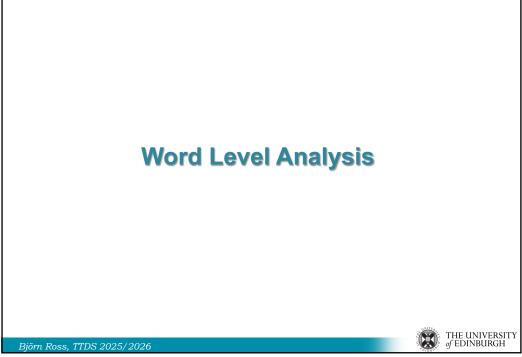
Björn Ross, TTDS 2025/2026

7

Content Analysis

- Can this process be automated?
 - Yes, to an extent
- Should this process be automated?
 - Humans are better than machines at this task (for now?)
 - Computers are much, much faster
 - · Avg. human reading speed: 250 wpm
 - Assume 1K words/document, 50K documents...
 - Average person needs > 4 months to read
 - This is a relatively small corpus for modern NLP
 - · Modern computers can process millions of words/second





Word frequency analysis

- Very simple starting point
- 1. Preprocess as usual (lowercasing? stemming?...)
- 2. Count words
- 3. Normalize by document length
- 4. Average across all documents

Björn Ross, TTDS 2025/2026

11

Word-level Differences

- Which words best characterize set of documents (such as a corpus or class)?
 - Need a reference corpus
- Some methods to do this:
 - Mutual information
 - Chi squared
- Can also be used for feature selection

Mutual Information

- I(X;Y)
 - How much can I learn about Y by observing X?
 - Is the same as information gain
 - Is **not** the same as *pointwise mutual information*
- We want to learn about important words in our class
- What should X and Y be?
 - X = U = document contains term t (Boolean)
 - Y = C = class is the target class (Boolean)

$$I(U;C) = \sum_{e_t \in \{1,0\}} \sum_{e_c \in \{1,0\}} P(U = e_t, C = e_c) \log_2 \frac{P(U = e_t, C = e_c)}{P(U = e_t)P(C = e_c)}$$

Björn Ross, TTDS 2025/2026

13

Mutual Information

$$I(U;C) = \sum_{e_t \in \{1,0\}} \sum_{e_c \in \{1,0\}} P(U = e_t, C = e_c) \log_2 \frac{P(U = e_t, C = e_c)}{P(U = e_t)P(C = e_c)}$$

 Given a corpus and a term, how do we estimate the probability of this term appearing in a random document in the corpus?

Source: Manning, Raghavan, and Schütze, 2008

Mutual Information

$$I(U;C) = \sum_{e_t \in \{1,0\}} \sum_{e_c \in \{1,0\}} P(U = e_t, C = e_c) \log_2 \frac{P(U = e_t, C = e_c)}{P(U = e_t)P(C = e_c)}$$

· Given count data for 2 classes, can be computed as:

$$I(U;C) = \frac{N_{11}}{N} \log_2 \frac{NN_{11}}{N_{1.}N_{.1}} + \frac{N_{01}}{N} \log_2 \frac{NN_{01}}{N_{0.}N_{.1}} + \frac{N_{10}}{N} \log_2 \frac{NN_{10}}{N_{1.}N_{.0}} + \frac{N_{00}}{N} \log_2 \frac{NN_{00}}{N_{0.}N_{.0}}$$

Source: Manning, Raghavan, and Schütze, 2008

Björn Ross, TTDS 2025/2026

15

Mutual Information

$$I(U;C) = \frac{N_{11}}{N} \log_2 \frac{NN_{11}}{N_{1.}N_{.1}} + \frac{N_{01}}{N} \log_2 \frac{NN_{01}}{N_{0.}N_{.1}} + \frac{N_{10}}{N} \log_2 \frac{NN_{10}}{N_{1.}N_{.0}} + \frac{N_{00}}{N} \log_2 \frac{NN_{00}}{N_{0.}N_{.0}}$$

- Example:
 - What is I(U;C) given these values?

$$e_c = e_{poultry} = 1 \hspace{0.5cm} e_c = e_{poultry} = 0 \ e_t = e_{export} = 1 \ e_t = e_{export} = 0 \ N_{11} = 49 \hspace{0.5cm} N_{10} = 27,652 \ N_{01} = 141 \hspace{0.5cm} N_{00} = 774,106$$

Example: Manning, Raghavan, and Schütze, 2008

Mutual Information

$$egin{array}{c|c} e_c = e_{poultry} = 1 & e_c = e_{poultry} = 0 \ \hline e_t = e_{ ext{export}} = 1 & N_{11} = 49 & N_{10} = 27,652 \ \hline e_t = e_{ ext{export}} = 0 & N_{01} = 141 & N_{00} = 774,106 \ \hline \end{array}$$

$$\begin{split} I(U;C) &= \frac{49}{801,948} \log_2 \frac{801,948 \cdot 49}{(49 + 27,652)(49 + 141)} \\ &+ \frac{141}{801,948} \log_2 \frac{801,948 \cdot 141}{(141 + 774,106)(49 + 141)} \\ &+ \frac{27,652}{801,948} \log_2 \frac{801,948 \cdot 27,652}{(49 + 27,652)(27,652 + 774,106)} \\ &+ \frac{774,106}{801,948} \log_2 \frac{801,948 \cdot 774,106}{(141 + 774,106)(27,652 + 774,106)} \\ &\approx \quad 0.0001105 \end{split}$$

Example: Manning, Raghavan, and Schütze, 2008

Biörn Ross, TTDS 2025/2026

17

Mutual Information for News Data

UK		
london	0.1925	
uk	0.0755	
british	0.0596	
stg	0.0555	
britain	0.0469	
plc	0.0357	
england	0.0238	
pence	0.0212	
pounds	0.0149	
english	0.0126	
coffee		

china	0.0997	
chinese	0.0523	
beijing	0.0444	
yuan	0.0344	
shanghai	0.0292	
hong	0.0198	
kong	0.0195	
xinhua	0.0155	
province	0.0117	
taiwan	0.0108	
elections		

poultry		
poultry	0.0013	
meat	0.0008	
chicken	0.0006	
agriculture	0.0005	
avian	0.0004	
broiler	0.0003	
veterinary	0.0003	
birds	0.0003	
inspection	0.0003	
pathogenic	0.0003	
snorts		

	coffe	ee
	coffee	0.0111
	bags	0.0042
	growers	0.0025
	kg	0.0019
	colombia	0.0018
	brazil	0.0016
	export	0.0014
	exporters	0.0013
	exports	0.0013
	crop	0.0012
Example: Manning, Rag	havan, and Scl	nütze, 2008

elections		
election	0.0519	
elections	0.0342	
polls	0.0339	
voters	0.0315	
party	0.0303	
vote	0.0299	
poll	0.0225	
candidate	0.0202	
campaign	0.0202	
democratic	0.0198	

sports		
soccer	0.0681	
cup	0.0515	
match	0.0441	
matches	0.0408	
played	0.0388	
league	0.0386	
beat	0.0301	
game	0.0299	
games	0.0284	
team	0.0264	

Chi-squared

- Hypothesis testing approach
- H₀: Term appearance is independent from a document's class
 - i.e., P(U = 1, C = 1) = P(U = 1)P(C = 1)
- Compute:

$$X^{2}(\mathbb{D}, t, c) = \sum_{e_{t} \in \{0,1\}} \sum_{e_{c} \in \{0,1\}} \frac{(N_{e_{t}e_{c}} - E_{e_{t}e_{c}})^{2}}{E_{e_{t}e_{c}}}$$

• Or to directly plug in values like before:

$$X^{2}(\mathbb{D},t,c) = \frac{(N_{11} + N_{10} + N_{01} + N_{00}) \times (N_{11}N_{00} - N_{10}N_{01})^{2}}{(N_{11} + N_{01}) \times (N_{11} + N_{10}) \times (N_{10} + N_{00}) \times (N_{01} + N_{00})}$$

Biörn Ross, TTDS 2025/2026

19

Chi-squared

$$X^{2}(\mathbb{D},t,c) = \frac{(N_{11} + N_{10} + N_{01} + N_{00}) \times (N_{11}N_{00} - N_{10}N_{01})^{2}}{(N_{11} + N_{01}) \times (N_{11} + N_{10}) \times (N_{10} + N_{00}) \times (N_{01} + N_{00})}$$

- Example
 - What is the value of X² given the example data?

$$e_{t} = e_{\mathsf{export}} = 1 \hspace{0.5cm} e_{c} = e_{poultry} = 1 \hspace{0.5cm} e_{c} = e_{poultry} = 0 \\ e_{t} = e_{\mathsf{export}} = 0 \hspace{0.5cm} N_{11} = 49 \hspace{0.5cm} N_{10} = 27,652 \\ N_{01} = 141 \hspace{0.5cm} N_{00} = 774,106$$

Chi-squared

$$egin{array}{c|c} e_c = e_{poultry} = 1 & e_c = e_{poultry} = 0 \\ e_t = e_{\mathsf{export}} = 1 & N_{11} = 49 & N_{10} = 27,652 \\ e_t = e_{\mathsf{export}} = 0 & N_{01} = 141 & N_{00} = 774,106 \\ \hline \end{array}$$

$$\frac{(49 + 27652 + 141 + 774106) \times (49 \cdot 774106 - 27652 \cdot 141)^2}{(49 + 141) \times (49 + 27652) \times (27652 + 774106) \times (141 + 774106)} \approx 284$$

Björn Ross, TTDS 2025/2026

THE UNIVERSITY of EDINBURGH

21

Dictionaries and Lexicons

Dictionaries and Lexicons

- What if we know what we are looking for?
- Dictionaries (lexicons) are prebuilt mappings
 - Category -> word list
 - E.g., a tiny sentiment lexicon:
 - Positive: good, great, happy, amazing, wonderful, best, incredible
 - Negative: terrible, horrible, bad, awful, nasty, gross, worst, poor
- Domain can be important
 - "unpredictable movie plot" ✓
 - "unpredictable coffee pot" X

Björn Ross, TTDS 2025/2026

23

Dictionaries and Lexicons

How to get a score per category?

 $\frac{num_dictionary_words_in_document}{num_total_words_in_document}$

- That's it!
- Can also be used as machine learning features
- A more advanced approaches to quantifying categories (optional reading)
 - https://www.ncbi.nlm.nih.gov/pubmed/28364281

Some Dictionaries

(Pennebaker et al., 2015) LIWC

 General Inquirer (Stone, 1997)

Roget's Thesaurus Categories

 VADER (Hutto and Gilbert, 2014)

 Sentiwordnet (Esuli and Sebastiani, 2006)

 Wordnet Domains (Magnini and Cavaglia, 2000)

(Mohammad and Turney, 2010) EmoLex

 Empath (Fast et al., 2016)

Personal Values Lexicon (Wilson et al., 2018)

25

Reactions to Rumor Tweets with EmoLex Surprise Disgust Fear Anger Sadness Anticipation Joy Trust .05 .15 .2 .25 % User Responses Red = reactions to false rumors Green = reactions to true rumors Vosoughi, Roy, and Aral, 2018 THE UNIVERSITY of EDINBURGH

26

Dominance Scores

• The dominance score for a category w.r.t. a corpus:

 $\frac{category_score_in_target_corpus}{category_score_in_background_corpus}$

• From Mihalcea and Pulman, 2009

Biörn Ross, TTDS 2025/2026

27

LIWC category dominance scores

Truthful				
Interviews		Trials		
Class	Score	Class	Score	
Metaphor	2.98	You	3.99	
Money	2.74	Family	3.07	
Inhibition	2.74	Home	2.45	
Home	2.13	Humans	1.87	
Humans	2.02	Posemo	1.81	
Family	1.96	Insight	1.64	

Deceptive			
Inte	Interviews		.ls
Class	Score	Class	Score
Assent	4.81	Anger	2.61
Past	2.59	Anxiety	2.61
Sexual	2.00	Certain	2.28
Other	1.87	Death	1.96
Motion	1.68	Physical	1.77
Negemo	1.44	Negemo	1.52

Pérez-Rosas et al, 2015

Topic Level Analysis

Bjorn Ross, 11DS 2025/2026

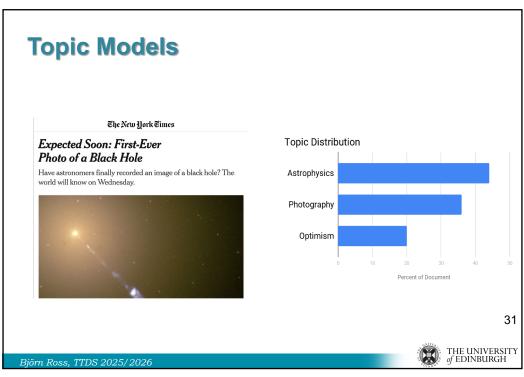
29

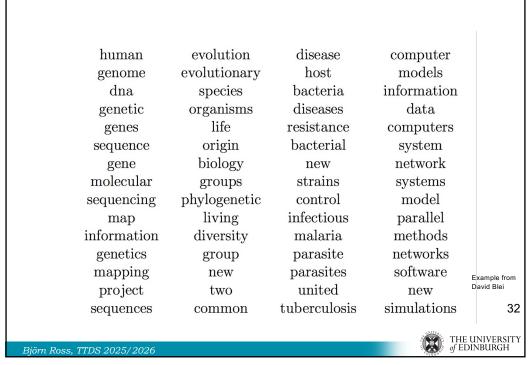
Intro to Topic Modelling

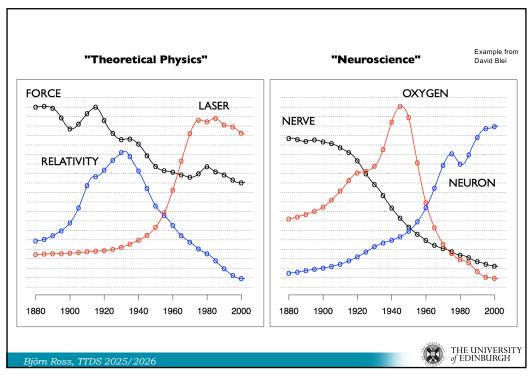
- Goals are similar to traditional content analysis:
 - What are the main themes/topics in this corpus?
 - Which documents contain which topics?

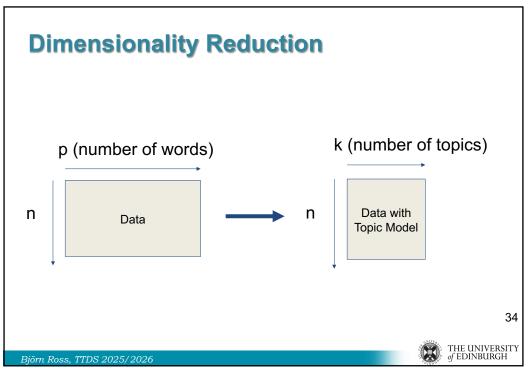
THE UNIVERSITY of EDINBURGH

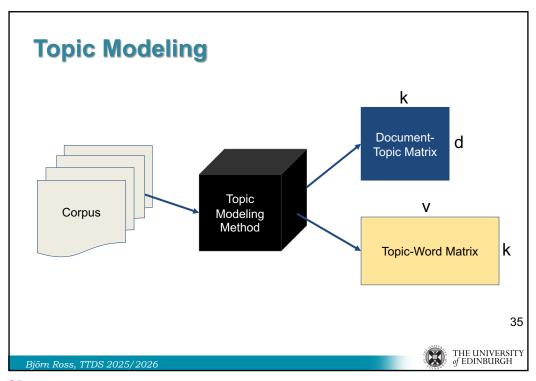
Björn Ross, TTDS 2025/2026

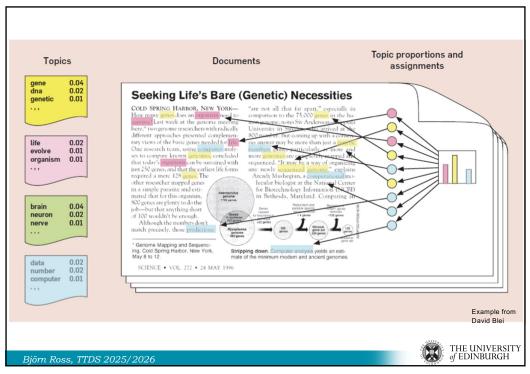












Topic Models

- Most often used for text data, but can also be applied in other settings:
 - Bioinformatics (Liu et al. 2016)
 - Computer code (McBurney et al. 2014)
 - Music (Hu and Saul 2009)
 - Network data (Cha and Cho 2014)

37

Björn Ross, TTDS 2025/2026

37

Topic Modeling Methods

- Most popular: Latent Dirichlet Allocation (LDA)
 - Introduced by David Blei, Andrew Ng, and Michael Jordan (2003)
- Other methods include
 - pLSI
 - PCA-based methods
 - Non-negative matrix factorization
 - Deep learning based topic modeling

• ...

38

THE UNIVERSITY
of EDINBURGH

Topic Modeling Methods

- Most popular: Latent Dirichlet Allocation (LDA)
 - Introduced by David Blei, Andrew Ng, and Michael Jordan (2003)
- Other methods include
 - pLSI
 - PCA-based methods
 - Non-negative matrix factorization
 - · Deep learning based topic modeling
 - ...

39

Björn Ross, TTDS 2025/2026

THE UNIVERSITY

of EDINBURGH

39

Latent Dirichlet Allocation (LDA)

• More details coming up in next lecture...

40

