

Text Technologies for Data Science INFR11145

Comparing Text Corpora (2)

Instructor: **Björn Ross**

29-Oct-2025

1

LDA Overview

Background: Plate Notation

3

THE UNIVERSITY
of EDINBURGH

Bjorn Ross, 11DS 2025/2020

3

Background: Plate Notation

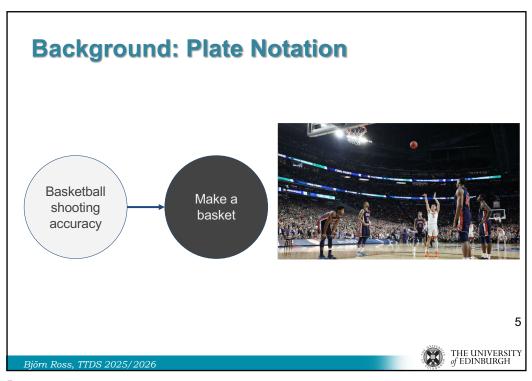
Make a basket

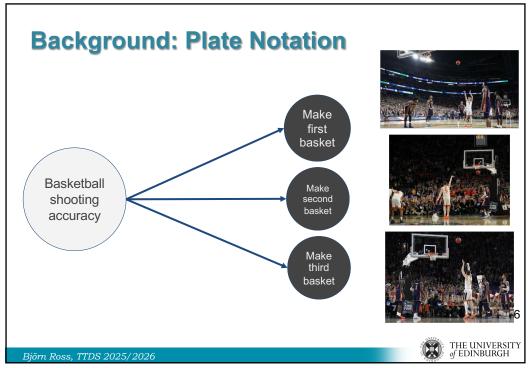
4

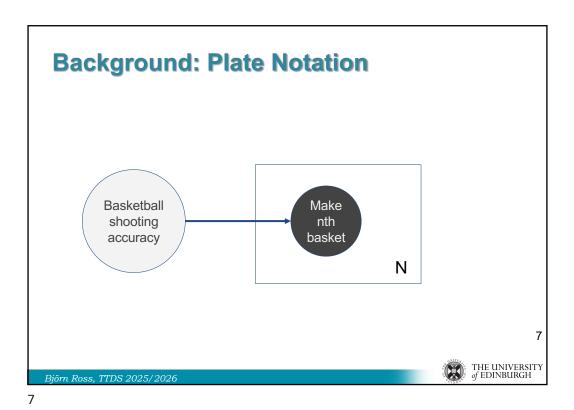
Björn Ross, TTDS 2025/202

THE UNIVERSITY
of EDINBURGH

Л





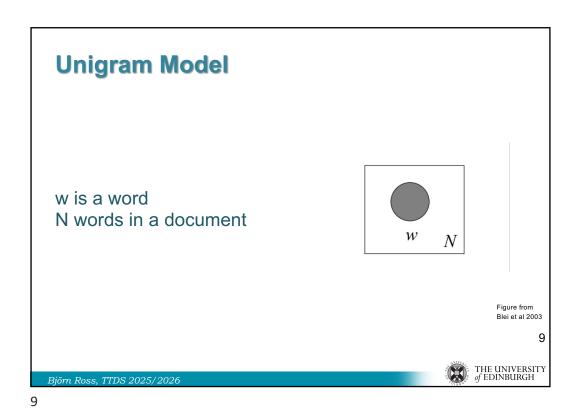


Latent Dirichlet Allocation

- Let's start with a very simple model
- We will work our way up to the full LDA model

THE UNIVERSITY of EDINBURGH

Björn Ross, TTDS 2025/2020



Unigram Model

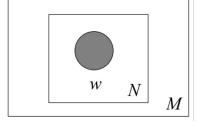
w is a word
N words in a document
M documents in a corpus

Figure from
Blei et al 2003

10

Unigram Model

w is a word
N words in a document
M documents in a corpus
w is a vector of words (i.e. doc)



 $p(\mathbf{w}) = \prod_{n=1}^{N} p(w_n)$

Figure from Blei et al 2003

-''|

Björn Ross, TTDS 2025/2026

11

Probability with a Unigram Model

$$p(\mathbf{w}) = \prod_{n=1}^{N} p(w_n)$$

What is the probability of the example sentence?

"My dog barked at another dog."

word	my	at	dog	another	barked
probability	.10	.10	.05	.04	.03

12

THE UNIVERSITY of EDINBURGH

Probability with a Unigram Model

$$p(\mathbf{w}) = \prod_{n=1}^{N} p(w_n)$$

word	my	at	dog	another	barked
probability	.1	.1	.05	.04	.03

Solution:

My dog barked at another dog.

13

Björn Ross, TTDS 2025/2020

13

Unigram Model...

- What is the point of making these models more complex?
- Why not just use the basic unigram model for everything?
- Remember:
 - Higher text probability doesn't imply a better model
 - We want to accurately describe the data
 - > higher probability for *real* documents, lower probability for noise

THE UNIVERSITY of EDINBURGH

Mixture of Unigrams Model

z is the topic of a document

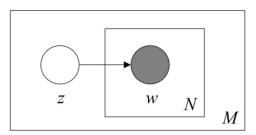


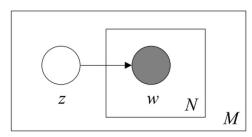
Figure from Blei et al 2003

15

Biörn Ross, TTDS 2025/2020

15

z is the topic of a document



$$p(\mathbf{w}) = \sum_{z} p(z) \prod_{n=1}^{N} p(w_n | z)$$

Figure from Blei et al 2003

16

iörn Ross, TTDS 2025/2026

THE UNIVERSITY of EDINBURGH

Probability with Mixture of Unigrams

$$p(\mathbf{w}) = \sum_{z} p(z) \prod_{n=1}^{N} p(w_n | z).$$

What is the probability of the sentence? Ignore stopwords: "my", "after", "the"

"My dog chased after the bus."

w_i	cat	dog	chased	car	bus
$P(w_i z = pets)$.20	.30	.10	.01	.01
$P(w_i z = vehicles)$.01	.01	.10	.30	.20

$$p(z = pets) = 0.6,$$

 $p(z = vehicles) = 0.4$

Biörn Ross, TTDS 2025/2026

17

17

Probability with Mixture of Unigrams

word	cat	dog	chased	car	bus
$P(w_i z = pets$.2	.3	.1	.01	.01
$P(w_i z = vehicles)$.01	.01	.1	.3	.2

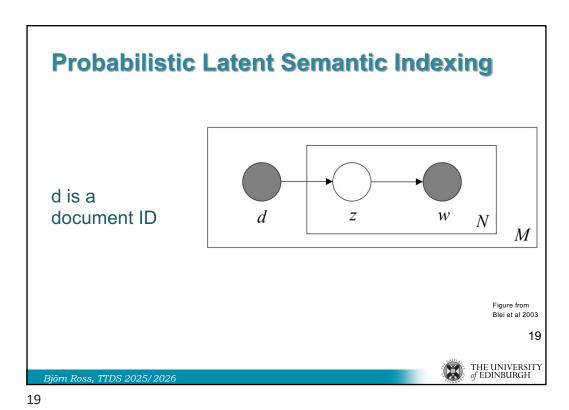
Solution:

My dog chased after the bus.

Total = .00026

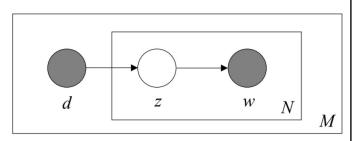
THE UNIVERSITY of EDINBURGH

18



Probabilistic Latent Semantic Indexing

d is a document ID



$$p(d,w_n) = p(d) \sum_{z} p(w_n | z) p(z | d)$$
 Figure from Blei et al 2003

Björn Ross, TTDS 2025/2020

THE UNIVERSITY of EDINBURGH

Probability with pLSI

ı	W:	cat	sat	down	car	broke
	$\frac{p(w_i z=t_1)}{p(w_i z=t_1)}$.1	.05	.01	.1
		.01	.05	.1	.3	.1

 d_1 "The **cat** sat down."

$p(d=d_1)$.01
$p(z = t_1 d = d_1)$.6
$p(z = t_2 d = d_1)$.4

w_i	cat	sat	down	car	broke
$p(w_i z=t_1)$.2	.1	.05	.01	.1
$p(w_i z=t_2)$.01	.05	.1	.3	.1

What is the joint probability of the document and the word "cat"?

Biörn Ross, TTDS 2025/2026

THE UNIVERSITY of EDINBURGH

21

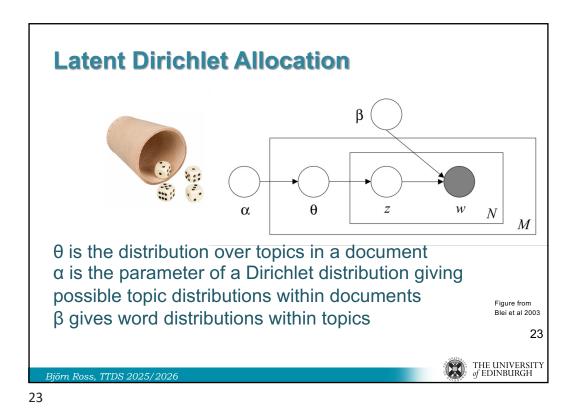
Probability with pLSI

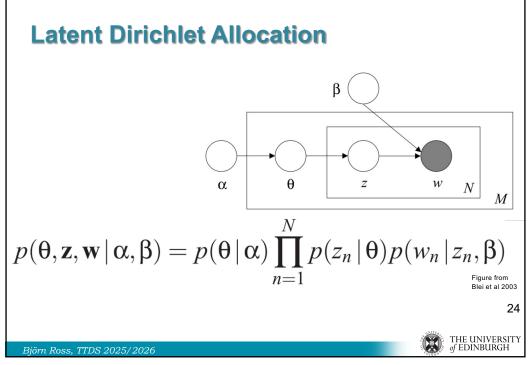
$$p(d,w_n) = p(d) \sum_{z} p(w_n | z) p(z | d)$$

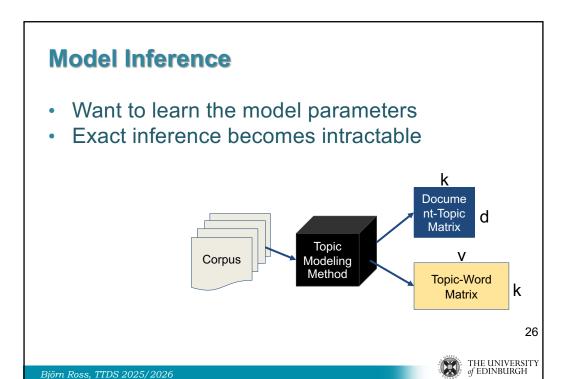
Solution:

The **cat** sat down. 0.01 * (0.2 * 0.6 + 0.01 * 0.4) = 0.00124

22







26

Model Inference

- Instead, use an approximate method such as:
 - Gibbs sampling
 - Variational Inference

THE UNIVERSITY of EDINBURGH

Björn Ross, TTDS 2025/2026

Goal: Learn Φ, θ given a set of documents D

 Φ = topic-word probabilities

 θ = document-topic probabilities

Known:

corpus, α , β and the probability that a word is from a topic conditional on the assignments of all other words to topics

$$P\!\left(z_i = j \mid \mathbf{z}_{-i}, w_i, d_i, \cdot\right) \propto \frac{C_{w_i j}^{WT} + \beta}{\sum\limits_{w = 1}^{W} C_{w j}^{WT} + W \beta} \frac{C_{d_i j}^{DT} + \alpha}{\sum\limits_{t = 1}^{T} C_{d_i t}^{DT} + T \alpha}$$

Note: the \propto symbol means "proportional to"

Biörn Ross, TTDS 2025/2026

28

28

Gibbs Sampling for LDA

Want to learn Φ , θ given a set of documents D

- 1. Assign each word a topic randomly
- 2. Calculate count matrices
- 3. Repeat until convergence:
 - · For every document d
 - · For every word i
 - Decrement count matrices C^{WT} and C^{DT} for current topic assignment
 - Sample a new topic assignment
 - Increment count matrices \mathcal{C}^{WT} and \mathcal{C}^{DT} for new topic assignment
- 4. Calculate Φ and θ

29

THE UNIVERSITY of EDINBURGH

- d1 Green eggs and ham.
- d2 Ham and green peppers.
- d3 Ham and cheese.
- d1 Green eggs and ham.
- d2 Ham and green peppers.
- d3 Ham and cheese.

Random initialization.

30

THE UNIVERSIT

Björn Ross, TTDS 2025/2026

30

Gibbs Sampling for LDA

C^{WT}	green	eggs	and	ham	peppers	cheese
t1	1	1	1	1	1	1
t2	1	0	2	2	0	0

Green eggs and ham. Ham and green peppers. Ham and cheese.

C^{DT}	d1	d2	d3
t1	2	2	2
t2	2	2	1

2

THE UNIV

Björn Ross, TTDS 2025/2026

Assume (for the moment) $\alpha = \beta = 0$

θ	green	eggs	and	ham	peppers	cheese
t1	0.17	0.17	0.17	0.17	0.17	0.17
t2	0.20	0.00	0.40	0.40	0.00	0.00

Green eggs and ham. Ham and green peppers. Ham and cheese.

Ф	d1	d2	d3
t1	0.50	0.50	0.66
t2	0.50	0.50	0.33

32

Björn Ross, TTDS 2025/2026

THE UNIVERSITY

32

Gibbs Sampling for LDA

C^{WT}	green	eggs	and	ham	peppers	cheese
t1	1	1	1	1	1	1
t2	1	0	2	2	0	0

Green eggs and ham. Ham and green peppers. Ham and cheese.

C^{DT}	d1	d2	d3
t1	2	2	2
t2	2	2	1

2

Björn Ross, TTDS 2025/2026

C^{WT}	green	eggs	and	ham	peppers	cheese
t1	1	1	1	1	1	1
t2	1	0	2	2	0	0

Green eggs and ham.

Ham and green peppers.

Ham and cheese.

C^{DT}	d1	d2	d3
t1	2	2	2
t2	2	2	1

34

Björn Ross, TTDS 2025/2026

THE UNIVERS

34

Gibbs Sampling for LDA

$$\frac{C_{w_{i}j}^{WT} + \beta}{\sum_{w=1}^{W} C_{wj}^{WT} + W\beta} \frac{C_{d_{i}j}^{DT} + \alpha}{\sum_{t=1}^{T} C_{d_{i}t}^{DT} + T\alpha}$$

Assume (for the moment) $\alpha = \beta = 0$

C^{WT}	green	eggs	and	ham	peppers	cheese
t1	0	1	1	1	1	1
t2	1	0	2	2	0	0

Green eggs and ham.
Ham and green peppers.
Ham and cheese.

C^{DT}	d1	d2	d3
t1	1	2	2
t2	2	2	1

35

C^{WT}	green	eggs	and	ham	peppers	cheese
t1	0	1	1	1	1	1
t2	2	0	2	2	0	0

Green eggs and ham.
Ham and green peppers.
Ham and cheese.

C^{DT}	d1	d2	d3
t1	1	2	2
t2	3	2	1

36

Björn Ross, TTDS 2025/2026

THE UNIVERSITY of EDINBURGH

36

Gibbs Sampling for LDA

C^{WT}	green	eggs	and	ham	peppers	cheese
t1	0	1	1	1	1	1
t2	2	0	2	2	0	0

Green eggs and ham. Ham and green peppers. Ham and cheese.

C^{DT}	d1	d2	d3
t1	1	2	2
t2	3	2	1

37

Björn Ross, TTDS 2025/2026

$$\frac{C_{w_{i}j}^{WT} + \beta}{\sum_{w=1}^{W} C_{wj}^{WT} + W\beta} \sum_{t=1}^{T} C_{d_{i}t}^{DT} + T\alpha$$

Assume (for the moment) $\alpha = \beta = 0$

C^{WT}	green	eggs	and	ham	peppers	cheese
t1	0	0	1	1	1	1
t2	2	0	2	2	0	0

Green eggs and ham. Ham and green peppers. Ham and cheese.

C^{DT}	d1	d2	d3
t1	0	2	2
t2	3	2	1

38

Björn Ross, TTDS 2025/2026

THE UNIVERSITY of EDINBURGH

38

Gibbs Sampling for LDA

$$\frac{C_{w_{i}j}^{WT} + \beta}{\sum_{w=1}^{W} C_{wj}^{WT} + W\beta} \frac{C_{d_{i}j}^{DT} + \alpha}{\sum_{t=1}^{T} C_{d_{i}t}^{DT} + T\alpha}$$

$C^{WT} + \alpha$	green	eggs	and	ham	peppers	cheese
t1	0.01	0.01	1.01	1.01	1.01	1.01
t2	2.01	0.01	2.01	2.01	0.01	0.01

Green eggs and ham. Ham and green peppers. Ham and cheese.

$C^{DT} + \beta$	d1	d2	d3
t1	0.01	2.01	2.01
t2	3.01	2.01	1.01

39

- Repeat until convergence
- Probabilistic algorithm results depend on random initialisation and random samples!

Björn Ross, TTDS 2025/2026

40

Topic Modeling Examples

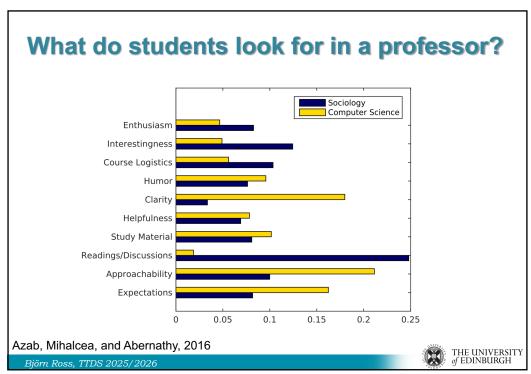
What do students look for in a professor?

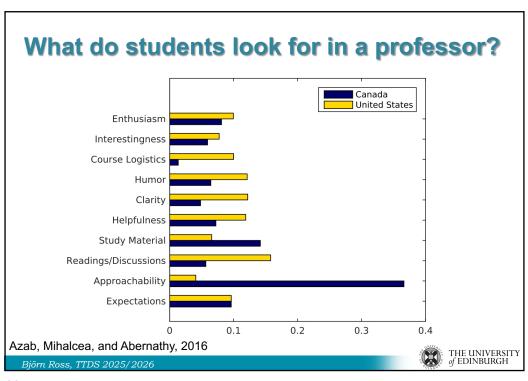
Topic	Sample words
Approachability	prof, fair, clear, helpful, teaching, approachable, nice, organized, ex-
	tremely, friendly, super, amazing
Clarity	understand, hard, homework, office, material, clear, helpful, problems,
	explains, accent, questions, extremely
Course Logistics	book, study, boring, extra, nice, credit, lot, hard, attendance, make,
	fine, attention, pay, mandatory
Enthusiasm	teaching, passionate, awesome, enthusiastic, professors, loves, cares,
	wonderful, fantastic, passion
Expectations	hard, work, time, lot, comments, tough, expects, worst, stuff, avoid,
	horrible, classes
Helpfulness	helpful, nice, recommend, cares, super, understanding, kind, extremely,
	effort, sweet, friendly, approachable
Humor	guy, funny, fun, awesome, cool, entertaining, humor, hilarious, jokes,
	stories, love, hot, enjoyable
Interestingness	interesting, material, recommend, lecturer, engaging, classes, knowl-
	edgeable, enjoyed, loved, topics
0 /	readings, papers, writing, ta, interesting, discussions, grader, essays,
sions	boring, books, participation
Study Material	exams, notes, questions, material, textbook, hard, slides, study, answer,
	clear, tricky, attend, long, understand

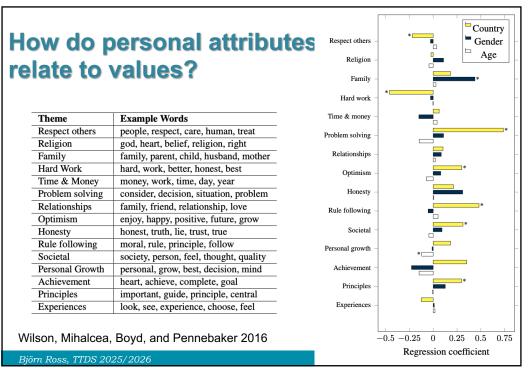
Azab, Mihalcea, and Abernathy, 2016

Biörn Ross, TTDS 2025/2026

42







Annotation + Classification

Björn Ross, TTDS 2025/2026

46

Annotation + Classification

- Method 1: Traditional Supervised Learning
 - Annotate representative samples
 - Train a classifier
 - Apply to rest of data
- Method 2: Transfer Learning
 - Find another large, but similar dataset
 - Train a classifier on that dataset
 - Optionally: fine-tune classifier to your smaller dataset
 - Apply to rest of your data

Björn Ross, TTDS 2025/2026

After Classification

- Which features are most relevant for each class?
- What are common words/topics for each class?
- How do predicted classes relate to other variables?
- More about text classification coming up next week!

Björn Ross, TTDS 2025/2026

48

Wrap-up

- · Content analysis background
- Word-level differences
- Dictionaries and Lexica
- Topic modeling
- Annotation + classification

Björn Ross, TTDS 2025/2026

Readings

- Manning: IR book section 13.5
- "Probabilistic Topic Models" by David Blei
- "Latent Dirichlet Allocation" by David Blei, Andrew Y. Ng, and Michael I. Jordan
- "Probabilistic Topic Models" by Mark Steyvers and Tom Griffiths

To watch:

 Guest lecture (2017) by David Blei at University of Edinburgh School of Informatics

Biörn Ross, TTDS 2025/2026

