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Background: Plate Notation
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Background: Plate Notation
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Latent Dirichlet Allocation

* Let’s start with a very simple model

* We will work our way up to the full LDA model
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Unigram Model

w is a word .
N words in a document

Figure from
Blei et al 2003
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Unigram Model

w is a word .

N words in a document

M documents in a corpus w N "
Figure from
Blei et al 2003
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Unigram Model

w is a word
N words in a document
M documents in a corpus wooN
w is a vector of words (i.e. doc) M
N
p(w)=T1pwa) e
n=1 "
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Probability with a Unigram Model
N
p(W) = Hp(wn)
n=1

What is the probability of the example sentence?

“‘My dog barked at another dog.”

word my at dog another |barked
probability |.10 .10 .05 .04 .03
12
& J
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Probabilitv with a Uniaram Model

p(w) = ::[lp(wn)

n
word my at dog another |barked
probability |.1 A .05 .04 .03
Solution:

My dog barked at another dog.
A*.05*.03* 1*.04 *.05=3e-8
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Unigram Model...

* What is the point of making these models more
complex?

* Why not just use the basic unigram model for
everything?

* Remember:
* Higher text probability doesn’t imply a better model
* We want to accurately describe the data
* - higher probability for real documents, lower probability for noise
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Mixture of Unigrams Model

z is the topic of a document 074.‘

y4 w N
M
15
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15
Mixture of Unigrams Model
z is the topic of a document “ w N M
N
p(w) =2 p@) [ p(walz)
z n=1 s
16
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What is the probability of the sentence?
Ignore stopwords: “my”, “after”, “the”

“My dog chased after the bus.”

Probability with Mixture of Uniarams

N
p(w)=3p(2) ]i[lp(wn 2)-

w; cat dog chased car bus
P(w;| z=pets) |.20 .30 .10 .01 .01
P(w;| z = vehicles) | .01 .01 .10 .30 .20
p(z = pets) = 0.6, 17
p(z = vehicles) = 0.4
\. THE UNIVERSITY
B SRR
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Probability with Mixture of Unigrams
word cat dog chased car bus
P(w;| z = pets 2 3 Nl .01 .01
P(w;| z = vehicles) |.01 .01 Nl 3 2
Solution:
My dog chased after the bus.
6( 31 * .01)= .00018
4 .01* A * 2 ) =.00008
Total = .00026
18
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Probabilistic Latent Semantic Indexing

dis a *m

document ID d z w N
Figure from
Blei et al 2003
19
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Probabilistic Latent Semantic Indexing

dis a *m

document ID d = wo N

p(d,wa) = p(d) Y p(wal2)p(z]d) .

Blei et al 2003

z 20
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P ro ba bi I ity w; cat |sat down car broke

with pLSI ol
p(d =d,) .01

d, “The cat sat down.” p(z=1t|d=d,)
p(Z:t2|d:d1) A4

w; cat |[sat down car broke
p(wilz=ty)|.2 A .05 .01 A
p(Wl.lz =t,) .01 .05 A 3 Ad

What is the joint probability of the document and the word “cat”'.g1
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Probability with pLSI

p(d,wn) =p(d) Y, p(wn|2)p(z|d)

<

Solution:

The cat sat down.
0.01*(0.2*0.6 +0.01*0.4)=0.00124
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Latent Dirichlet Allocation

%
- @ Wee
Do Wl
&= =
s .
W'

Re8

0

0 is the distribution over topics in a document

a is the parameter of a Dirichlet distribution giving

possible topic distributions within documents

B gives word distributions within topics
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Figure from
Blei et al 2003
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Latent Dirichlet Allocation
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p(0,z,w|o,pB) =
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Model Inference

« Want to learn the model parameters
« Exact inference becomes intractable

Docume
nt-Topic d
Matrix

Topic

Corpus II

[ ) \Y;
Modeling
Method Topic-Word
Matrix K
26
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Model Inference

» Instead, use an approximate method such as:
« Gibbs sampling
« Variational Inference

27
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Gibbs Sampling for LDA

Goal: Learn ®, 8 given a set of documents D

® = topic-word probabilities
8 = document-topic probabilities

Known:

corpus, a, B and the probability that a word is from a
topic conditional on the assignments of all other words to
topics

Coi+ B C)l+a

P(Zi :jlz—iawhdi)')m W T
SCTAWR Y C 4 Ta
w=1 t=1

28

Note: the o« symbol means “proportional to”
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Gibbs Sampling for LDA

Want to learn @, 8 given a set of documents D

Assign each word a topic randomly
Calculate count matrices

3. Repeat until convergence:
* For every document d
* For every word i
+ Decrement count matrices ¢"T and CPT for current topic assignment
» Sample a new topic assignment
+ Increment count matrices CWT and €PT for new topic assignment

4. Calculate ® and 6

N —

29
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Gibbs Sampling for LDA

d1 Green eggs and ham.
d2 Ham and green peppers.
d3 Ham and cheese.

d1 Green eggs and ham.
d2 Ham and green peppers.
d3 Ham and cheese.

30

Random

initialization.

Gibbs Sampling for LDA

Bjorn Ross, TTDS 2025/2026
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CWT |green |eggs and ham peppers cheese
t1 1 1 1 1 1 1
t2 1 0 2 2 0 0
DT

Green eggs and ham. ¢ d1 d2 d3
Ham and green peppers. t1 ) ) 5
Ham and cheese.

12 2 2 1

15



Gibbs Sampling for LDA

Assume (for the moment)a = =0

Bjorn Ross, TTDS 2025/2026
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0 green eggs and ham peppers cheese
t1 0.17 0.17 0.17 0.17 0.17 0.17
t2 0.20 0.00 0.40 0.40 0.00 0.00
Green eggs and ham. o d1 d2 d3
Ham and green peppers. t1 0.50 050 lo.66
Ham and cheese.
t2 050 |0.50 |0.33 2

&9 THE UNIVERSITY
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CcWT |green |eggs and ham peppers cheese
t1 1 1 1 1 1 1
t2 1 0 2 2 0 0
cPT |d1  |d2 |d3
Green eggs and ham.
Ham and green peppers. t1 ) ) 5
Ham and cheese.
2 |2 |2 |1 -
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Gibbs Sampling for LDA
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CcWT |green |eggs and ham peppers cheese
t1 1 1 1 1 1 1
t2 1 0 2 2 0 0
DT

Green|eggs and ham. ¢ d1 d2 d3
Ham and green peppers. t1 ) ) 5
Ham and cheese.

2 |2 |2 |1 w
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Assume (for the moment)a =8 =0

Gibbs Sampling for LDA

Coo+p

DT
Cdi]. +a

w T
ST WE S Y 4+ Ta
w=1 t=1
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CcWT |green |eggs and ham peppers cheese
t1 0 1 1 1 1 1
t2 1 0 2 2 0 0
cPT |d1  |d2 |d3
Green|eggs and ham.
Ham and green peppers. t1 1 ) 5
Ham and cheese.
2 |2 |2 |1 .
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Gibbs Sampling for LDA

CcWT |green |eggs and ham peppers cheese
t1 0 1 1 1 1 1
t2 2 0 2 2 0 0
CcPT |d1 |d2 |d3
Greenleggs and ham.
Ham and green peppers. 1 1 ) 7
Ham and cheese.
12 3 2 1 36
® J
36
Gibbs Sampling for LDA
CcWT |green |eggs and ham peppers cheese
t1 0 1 1 1 1 1
t2 2 0 2 2 0 0
CcPT |d1 |d2 |d3
Green|eggs|and ham.
Ham and green peppers. 1 1 ) 7
Ham and cheese.
2 3 |2 |1 5
TN ARG ST 6 TR
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Gibbs Sampling for LDA

Assume (for the moment)a =8 =0

Coo+p

DT
G, +ta

w T
ST AW Y CY 4 Ta
w=l

t=1

CcWT |green |eggs and ham peppers cheese
t1 0 0 1 1 1 1
t2 2 0 2 2 0 0
DT

Greenleggs and ham. ¢ d1 d2 d3
Ham and green peppers. t1 0 ) 5
Ham and cheese.

2 |3 |2 |1 s

Bjorn Ross, TTDS 2025/2026
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Gibbs Sampling for LDA "V ra
w T
ST WE S Y 4+ Ta
w=1 t=1
CWT + o |green |eggs |and ham |peppers |cheese
t1 0.01 0.01 1.01 1.01 1.01 1.01
t2 2.01 0.01 2.01 2.01 0.01 0.01
DT
Greenleggs and ham. C™ +p|dl |d2 |d3
Ham and green peppers. 1 0.0112.01 |2.01
Ham and cheese.
2 3.01(2.01[1.01 |

Bjorn Ross, TTDS 2025/2026
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Gibbs Sampling for LDA

* Repeat until convergence

* Probabilistic algorithm — results depend on random
initialisation and random samples!
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Topic Modeling Examples
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What do students look for in a professor?

Topic |Samp1e words

Approachability prof, fair, clear, helpful, teaching, approachable, nice, organized, ex-
tremely, friendly, super, amazing

Clarity understand, hard, homework, office, material, clear, helpful, problems,
explains, accent, questions, extremely

Course Logistics book, study, boring, extra, nice, credit, lot, hard, attendance, make,
fine, attention, pay, mandatory

Enthusiasm teaching, passionate, awesome, enthusiastic, professors, loves, cares,
wonderful, fantastic, passion

Expectations hard, work, time, lot, comments, tough, expects, worst, stuff, avoid,
horrible, classes

Helpfulness helpful, nice, recommend, cares, super, understanding, kind, extremely,
effort, sweet, friendly, approachable

Humor guy, funny, fun, awesome, cool, entertaining, humor, hilarious, jokes,
stories, love, hot, enjoyable

Interestingness interesting, material, recommend, lecturer, engaging, classes, knowl-

edgeable, enjoyed, loved, topics

Readings/ Discus-|readings, papers, writing, ta, interesting, discussions, grader, essays,
sions boring, books, participation

Study Material exams, notes, questions, material, textbook, hard, slides, study, answer,
clear, tricky, attend, long, understand

Azab, Mihalcea, and Abernathy, 2016

Bjérn Ross, TTDS 2025/2026
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What do students look for in a professor?

I Sociology
[ Computer Science

Enthusiasm 1

Interestingness k
Course Logistics R

Humor E

Clarity

Helpfulness

Study Material
Readings/Discussions

Approachability — ' .

Expectations E

0 0.05 0.1 0.15 0.2 0.25

Azab, Mihalcea, and Abernathy, 2016

Bjérn Ross, TTDS 2025/2026
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Enthusiasm
Interestingness
Course Logistics
Humor

Clarity
Helpfulness

Study Material

Readings/Discussions
Approachability

Expectations

I Canada
[—JUnited States

0 0.1 0.2
Azab, Mihalcea, and Abernathy, 2016

Bjérn Ross, TTDS 2025/2026
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What do students look for in a professor?

THE UNIVERSITY
of EDINBURGH

How do personal attributes
relate to values?

Theme Example Words

Respect others people, respect, care, human, treat
Religion god, heart, belief, religion, right
Family family, parent, child, husband, mother
Hard Work hard, work, better, honest, best

Time & Money money, work, time, day, year
Problem solving | consider, decision, situation, problem
Relationships family, friend, relationship, love
Optimism enjoy, happy, positive, future, grow
Honesty honest, truth, lie, trust, true

Rule following moral, rule, principle, follow

Societal society, person, feel, thought, quality
Personal Growth | personal, grow, best, decision, mind
Achievement heart, achieve, complete, goal
Principles important, guide, principle, central
Experiences look, see, experience, choose, feel

Wilson, Mihalcea, Boyd, and Pennebaker 2016

Bjérn Ross, TTDS 2025/2026
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Annotation + Classification
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Annotation + Classification

* Method 1: Traditional Supervised Learning
* Annotate representative samples
* Train a classifier
* Apply to rest of data
* Method 2: Transfer Learning
* Find another large, but similar dataset
* Train a classifier on that dataset
* Optionally: fine-tune classifier to your smaller dataset
* Apply to rest of your data

@ THE UNIVERSITY
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After Classification

Which features are most relevant for each class?
What are common words/topics for each class?
* How do predicted classes relate to other variables?

* More about text classification coming up next week!
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Wrap-up

Content analysis background
Word-level differences
Dictionaries and Lexica
Topic modeling

Annotation + classification
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Readings

° Manning: IR book section 13.5

* “Probabilistic Topic Models” by David Blei

* “Latent Dirichlet Allocation” by David Blei, Andrew Y. Ng,
and Michael |. Jordan

* “Probabilistic Topic Models” by Mark Steyvers and Tom

Griffiths

To watch:
* Guest lecture (2017) by David Blei at University of
Edinburgh School of Informatics

/&%) THE UNIVERSITY
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https://nlp.stanford.edu/IR-book/
https://nlp.stanford.edu/IR-book/
http://www.cs.columbia.edu/~blei/papers/Blei2012.pdf
https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
https://cocosci.princeton.edu/tom/papers/SteyversGriffiths.pdf
https://www.youtube.com/watch?v=FkckgwMHP2s
https://www.youtube.com/watch?v=FkckgwMHP2s

