

Text Technologies for Data Science INFR11145

Text Classification

Instructor: **Björn Ross**

12-Nov-2025

1

Pre-Lecture

- Today
 - Lecture 1 (Text classification): Theory
 - Coursework 2
- Next week
 - · Lecture cancelled due to strikes

Lecture Objectives

- Learn about text basics of text classification
 - Definition
 - Types
 - Methods and models

Björn Ross, TTDS 2025/2026

THE UNIVERSITY of EDINBURGH

3

Definition

Björn Ross, TTDS 2025/2026

THE UNIVERSITY

Text Classification

- Text classification is the process of <u>classifying</u> documents into <u>predefined categories</u> based on their content.
- Input: Text (document, article, sentence)
- Task: Classify into predefined one/multiple categories
- Categories:
 - Binary: relevant/irrelevant, spam .. etc.
 - Few: sports/politics/comedy/technology
 - Hierarchical: patents

Björn Ross, TTDS 2025/2026

5

Classification is and is not

- Classification (a.k.a. "categorization"): a common technology in data science; studied within pattern recognition, statistics, and machine learning.
- Definition: the activity of predicting to which among a predefined finite set of groups ("classes", or "categories") a data item belongs to
- Formulated as the task of generating a hypothesis (or "classifier", or "model")

 $h: D \rightarrow C$

where D = $\{x_1, x_2, ...\}$ is a domain of data items and C = $\{c_1, ..., c_n\}$ is a finite set of classes (the classification scheme)

Classification is and is not

- Different from <u>clustering</u>, where the groups ("clusters") and their number are not known in advance
- Unsuitable when class membership can be determined with certainty (relatively easily)
 - e.g., predicting whether a natural number belongs to *Prime* or *Non-Prime* is not classification
- In text classification, data items are
 - **Textual**: e.g., news articles, emails, sentences, queries, etc.
 - Partly textual: e.g., Web pages

THE UNIVERSITY of EDINBURGH

Björn Ross, TTDS 2025/2026

7

Types of classification

Types of Classification

Binary:

item to be classified into one of two classes $h: D \rightarrow C$, $C = \{c_1, c_2\}$

- e.g., Spam/not spam, offensive/not offensive, rel/irrel
- Single-Label Multi-Class (SLMC)

item to be classified into only one of *n* possible classes.

$$h: D \rightarrow C$$
, $C = \{c_1 \dots c_n\}$, where n>2

- e.g., Sports/politics/entertainment, positive/negative/neutral
- Multi-Label Multi-Class (MLMC)
 item to be classified into none, one, two, or more classes

 $h: D \rightarrow 2^{\mathbb{C}}, C = \{c_1 \dots c_n\}, \text{ where n>1}$

- e.g., Assigning CS articles to classes in the ACM Classification System
- Usually be solved as n independent binary classification problems

Björn Ross, TTDS 2025/2026

q

Dimension of Classification

- Text classification may be performed according to several dimensions ("axes") orthogonal to each other
- by topic; by far the most frequent case, its applications are global
- by sentiment; useful in market research, online reputation management, social science and political science
- by language (a.k.a. "language identification"); useful, e.g., in query processing within search engines
- by genre; e.g., AutomotiveNews vs. AutomotiveBlogs, useful in website classification and others;
- by author (a.k.a. "authorship attribution"), by native language ("native language identification"), or by gender; useful in forensics and cybersecurity
- by usefulness; e.g., product reviews
-

Methods and models

Björn Ross, TTDS 2025/2026

11

Methods and models

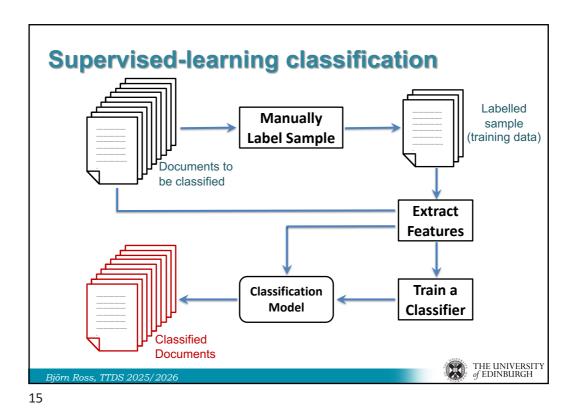
- Rule-based classification
- Supervised-learning classification
 - Traditional features
 - Word embeddings
- Pre-trained language models
 - Supervised fine-tuning for classification
 - Zero-shot classification

Björn Ross, TTDS 2025/2026

Rule-based classification

- An old-fashioned way to build text classifiers was via knowledge engineering, i.e., manually building classification rules
 - E.g., (Viagra or Sildenafil or Cialis) → Spam
 - E.g. (#MAGA or America great again) → support Trump
- Common type: dictionary-based classification
- · Disadvantages:
 - Expensive to setup and to maintain
 - Depends on few keywords → bad coverage (recall)

Björn Ross, TTDS 2025/2026



13

Supervised-learning classification

- A generic (task-independent) learning algorithm is used to train a classifier from a set of manually classified examples
- The classifier learns, from these training examples, the characteristics a new text should have in order to be assigned to class c
- Advantages:
 - · Generating training examples cheaper than writing classification rules
 - Easy update to changing conditions (e.g., addition of new classes, deletion of existing classes, shifted meaning of existing classes, etc.)

Extract Features

- In order to be input to a learning algorithm (or a classifier), all training (or unlabeled) documents are converted into vectors in a common vector space
- The dimensions of the vector space are called features
- In order to generate a vector-based representation for a set of documents D, the following steps need to be taken
 - 1. Feature Extraction
 - 2. Feature Selection or Feature Synthesis (optional)
 - 3. Feature Weighting

Björn Ross, TTDS 2025/2026

Step 1: Feature Extraction

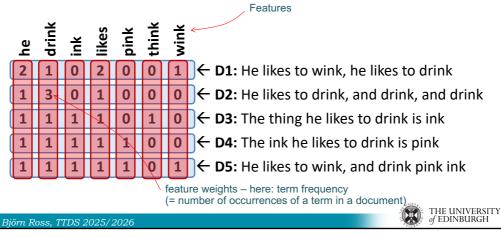
- What are the features that should be different from one class to another?
- Simplest form: Bag-of-words (BOW)
 - · Each term in a document is a feature
 - Feature space size = vocabulary in all docs
 - Standard IR preprocessing steps are usually applied
 - Tokenisation, stopping, stemming

THE UNIVERSIT

Björn Ross, TTDS 2025/2026

17

Step 1: Feature Extraction


- Bag-of-words (BOW)
 - Recall from Indexing lecture how we represented documents and words as vectors

THE UNIVERSITY of EDINBURGH

Björn Ross, TTDS 2025/2026

Step 1: Feature Extraction

- Bag-of-words (BOW)
 - Recall from Indexing lecture how we represented documents and words as vectors

19

Step 1: Feature Extraction

- Other simple features forms:
 - Word n-grams (bigrams, trigrams,)
 - Much larger + more sparse
 - Sometimes char n-grams are used
 - Especially for degraded text (OCR or ASR outputs)

THE UNIVERSITY of EDINBURGH

Step 1: Feature Extraction

- What other text features could be used?
- Sentence structure:
 - POS (part-of-speech tags)
 - Syntactic tree structure
- Topic-based features:
 - LDA topics
 - · NEs (named entities) in text
 - · Links / Linked terms
- Non-textual features:
 - Average doc\sentence\word length
 - % of words start with upper-case letter
 - % of links/hashtags/emojis in text

Björn Ross, TTDS 2025/2026

21

Step 1: Feature Extraction

- What preprocessing to apply?
 - · Case-folding? really vs Really vs REALLY
 - Punctuation? "?", "!", "@", "#"
 - Stopping? "he", "she", "what", "but"
 - Stemming? "replaced" vs "replacement"
- Other Features:
 - Starts with capital letter, all caps
 - Repeated characters "congraaaaaats" "help!!!!!!!"
 - Scores from dictionaries and lexicons (e.g. LIWC)
- Which to choose?
 - Classification task/application

Step 2: Feature Selection

- Number of distinctive features = length of feature vector
- Vector can be of length in the order of 10⁶, and might be sparse
 - → High computational cost
 - → Overfitting
- What are the most important features among those?
 - e.g. Reduce from 10⁶ to 10⁴
- For each class, find the top representative k features for it → get the Union over all classes → reduced feature space

Björn Ross, TTDS 2025/2026

23

Step 2: Feature Selection Functions

- Document frequency
 - % of docs in class c_i that contain the term t_k
 - · Very basic measure. Will select stop words as features

$$\#(t_k, c_i) = P(t_k|c_i)$$

- Mutual Information
 - How much we learn from the presence or absence of term t_k about whether or not a document is in class c_i
 - · Often used in feature selection in text classification

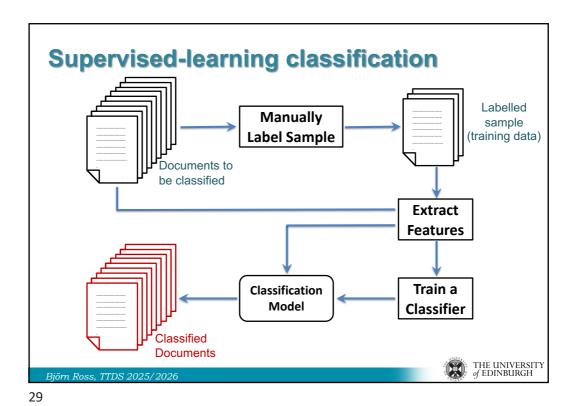
$$MI(t_k,c_i) = \sum_{c \in \{c_i,c_i\}} \sum_{t \in \{t_k,t_k\}} P(t,c) \cdot log_2 \frac{P(t,c)}{P(t) \cdot P(c)}$$

- Pearson's Chi-squared (x^2)
 - · used more in comparisons between classes

Step 2: Feature Selection Functions

Function	Denoted by	Mathematical form
Document frequency	$\#(t_k,c_i)$	$P(t_k c_i)$
DIA association factor	$z(t_k, c_i)$	$P(c_i t_k)$
Information gain	$IG(t_k, c_i)$	$\sum_{c \in \{c_i, \overline{c}_i\}} \sum_{t \in \{t_k, \overline{t}_k\}} P(t, c) \cdot \log \frac{P(t, c)}{P(t) \cdot P(c)}$
Mutual information	$MI(t_k, c_i)$	$\log \frac{P(t_k, c_i)}{P(t_k) \cdot P(c_i)}$
Chi-square	$\chi^2(t_k,c_i)$	$\frac{ Tr \cdot [P(t_k, c_i) \cdot P(\overline{t}_k, \overline{c}_i) - P(t_k, \overline{c}_i) \cdot P(\overline{t}_k, c_i)]^2}{P(t_k) \cdot P(\overline{t}_k) \cdot P(c_i) \cdot P(\overline{c}_i)}$
NGL coefficient	$NGL(t_k, c_i)$	$\frac{\sqrt{ Tr } \cdot [P(t_k, c_i) \cdot P(\overline{t}_k, \overline{c}_i) - P(t_k, \overline{c}_i) \cdot P(\overline{t}_k, c_i)]}{\sqrt{P(t_k) \cdot P(\overline{t}_k) \cdot P(c_i) \cdot P(\overline{c}_i)}}$
Relevancy score	$RS(t_k, c_i)$	$\log \frac{P(t_k c_i) + d}{P(\overline{t}_k \overline{c}_i) + d}$
Odds Ratio	$OR(t_k, c_i)$	$\frac{P(t_k c_i) \cdot (1 - P(t_k \overline{c}_i))}{(1 - P(t_k c_i)) \cdot P(t_k \overline{c}_i)}$
GSS coefficient	$GSS(t_k, c_i)$	$P(t_k, c_i) \cdot P(\overline{t}_k, \overline{c}_i) - P(t_k, \overline{c}_i) \cdot P(\overline{t}_k, c_i)$

Björn Ross, TTDS 2025/2026



25

Step 3: Feature Weighting

- Attributing a value to feature t_k in document d_i This value may be
 - binary (representing presence/absence of t_k in d_i);
 - numeric (representing the importance of t_k for d_i); obtained via feature weighting functions in the following two classes:
 - unsupervised: e.g., tfidf or BM25,
 - supervised: e.g., tf * MI, tf * x^2
- Similarity between two vectors may be computed e.g. via cosine similarity
- Scaling can be important!

Training a Classifier

- For binary classification, essentially any supervised learning algorithm can be used for training a classifier; classical choices include
 - Support vector machines (SVMs)
 - Random forests
 - Naïve Bayesian methods
 - Lazy learning methods (e.g., k-NN)
 - Logistic Regression
 -
- The "No-free-lunch principle" (Wolpert, 1996) → there is no learning algorithm that can outperform all others in all contexts
- Implementations need to cater for
 - the very high dimensionality
 - · the sparse nature of the representations involved

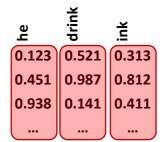
Training a Classifier

- For Multiclass classification, some learning algorithms for binary classification are "SLMC-ready"; e.g.
 - Decision trees
 - Random forests
 - Naive Bayesian methods
 - Lazy learning methods (e.g., k-NN)
 - Neural networks
- For other learners (notably: SVMs) to be used for SLMC classification, combinations / cascades of the binary versions need to be used
 - · e.g. multi-class classification SVM
 - · Could be directly used for MLMC as well

Björn Ross, TTDS 2025/2026

31

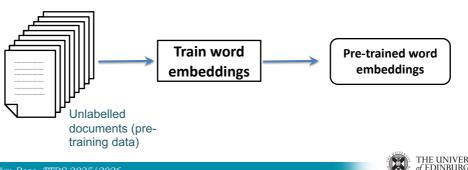
Word embeddings


- More complex representation of words as vectors
 Recall the **term vectors** in traditional indexing or classification, using term
 frequency as weights:
 - Sparse (most values are 0)
 - Capture semantics only incidentally (similar vectors are terms that appear together)

he	drin	ä	=	IKes	pink	thin	wink	
2	1	0		2	0	0	1	← D1: He likes to wink, he likes to drink
1	3	0	1	L	0	0	0	\leftarrow D2: He likes to drink, and drink, and drink
1	1	1	1	L	0	1	0	← D3: The thing he likes to drink is ink
1	1	1	1	L	1	0	0	← D4: The ink he likes to drink is pink
1	1	1	1	L	1	0	1	← D5: He likes to wink, and drink pink ink
	2 1 1	2 1 1 3 1 1 1 1 1 1	e	2 1 0 2 1 3 0 1 1 1 1 1 1 1 1 1	P	a 1 <td>a 1<td>a 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 2 0 0 1 1 1 1 0 0 0 3 0 1 1 1 1 1 1 0 0 0 4 0</td></td>	a 1 <td>a 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 2 0 0 1 1 1 1 0 0 0 3 0 1 1 1 1 1 1 0 0 0 4 0</td>	a 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 2 0 0 1 1 1 1 0 0 0 3 0 1 1 1 1 1 1 0 0 0 4 0

- · More complex representation of words as vectors
 - Dense (all entries are non-zero)
 - Capture semantics (similar words have similar vectors)

(many dimensions e.g. 300)


Björn Ross, TTDS 2025/2026

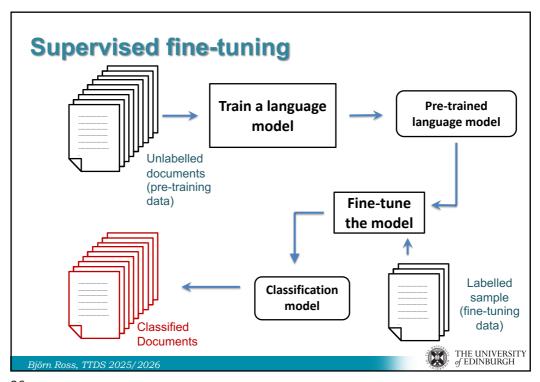
THE UNIVERSITY of EDINBURGH

33

Word embeddings

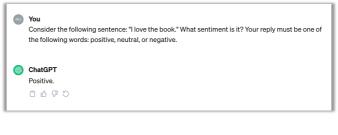
- Obtained through self-supervised learning to learn relationships between words
 - Predict a centre word given surrounding context words (CBOW)
 - Predict context words given target word (skip-gram)
- · Can be done on a large unlabelled pre-training corpus
- · Helps with out-of-vocabulary problems

Björn Ross, TTDS 2025/2026


Pre-trained language models

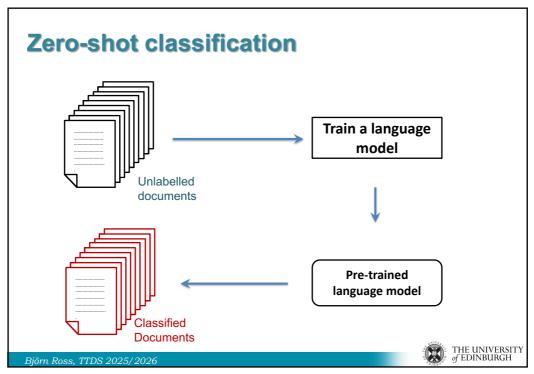
- Obtained through self-supervised learning
 - Predict the next word: The Queen of [...] (next token prediction)
 - Predict a masked word: The [...] of England. (masked language modelling)
 - •
- Also done on large unlabelled pre-training corpora
- Penultimate layer of network can be used to generate contextualised word embeddings for other languagebased tasks
- Basis for many state-of-the-art text classifiers
 - e.g. BERT (DistilBERT, RoBERTa..), XLNet, etc.

Björn Ross, TTDS 2025/2026



35

Zero-shot classification


- Using language models for classification directly without giving training examples (= skipping the fine-tuning step)
 - A modern approach that can work well and requires little human effort
 - Depends highly on black-box models, limited opportunities for customisation and error analysis (but this is an active research area)
 - Often used as a baseline for performance comparisons

Björn Ross, TTDS 2025/2026

THE UNIVERSITY

37

Few-shot classification

- Variation of zero-shot classification: A few examples are given in the prompt
- Also skips task-specific finetuning
- Leverages models' capability at in-context learning (adapt to a task from examples in the input prompt)

Task: Identify the stance toward carbon tax in the given sentence Your reply must be one of: support, oppose, neutral.

Examples

Sentence: "I think a carbon tax is necessary to fight climate change." Target: carbon tax \Rightarrow support

Sentence: "Renewable energy is amazing, though I don't have strong feelings about a carbon tax." Target: carbon tax \rightarrow neutral

Now classify this sentence:

Sentence: "I support policies to reduce emissions, but I'm worried about how a carbon tax will affect me personally."

Target: carbon tax ->

Target: carbon tax → oppose

THE UNIVERSITY of EDINBURGH

Björn Ross, TTDS 2025/2026

39

Evaluation

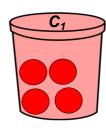
Björn Ross, TTDS 2025/2026

Evaluation

- Effectiveness (e.g. accuracy, precision, recall, F1):
 - Global effectiveness measures
 - Per class effectiveness measures
- Efficiency:
 - Speed in learning
 - · SVM with linear kernel is known to be fast
 - DNNs are known to be much slower (specially with large # layers)
 - Speed in classification
 - . K-NNs are known to be one of the slowest
 - Speed in feature extraction
 - BOW vs POS vs Link analysis features
- Importance of baselines

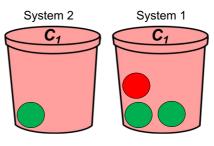
Björn Ross, TTDS 2025/2026

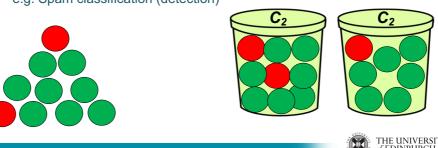
41


Evaluation: Baselines

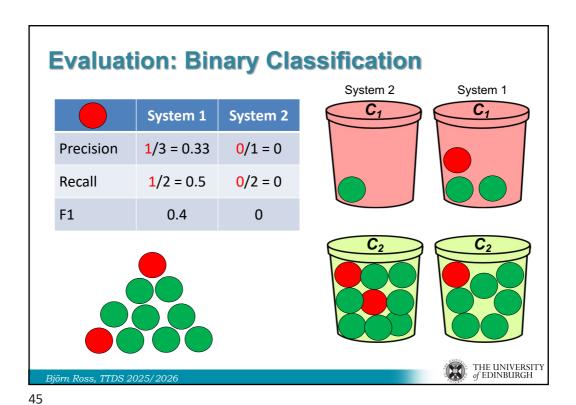
- There are standard methods for creating baselines in text classification to compare your classifier with
- Most popular/simplest baselines
 - Random classification
 - · Classes are assigned randomly
 - How much better is the classifier doing than random?
 - Majority class baseline
 - · Assign all elements to the class that appears the most
 - How much better you are doing than if you always picked the same thing output regardless of input?
 - Simple algorithm, e.g. BOW
 - Usually used when you introduce new interesting features
 - LLMs zero-shot, e.g. GPT-4o
 - · Can sometimes outperform fine-tuned models

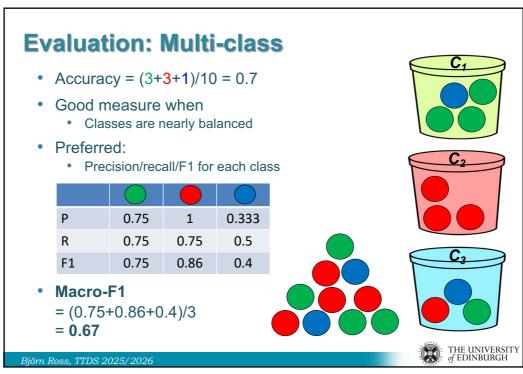
- Accuracy:
 - How many of the samples are classified correctly?
- A = (4+5)/10 = 0.9

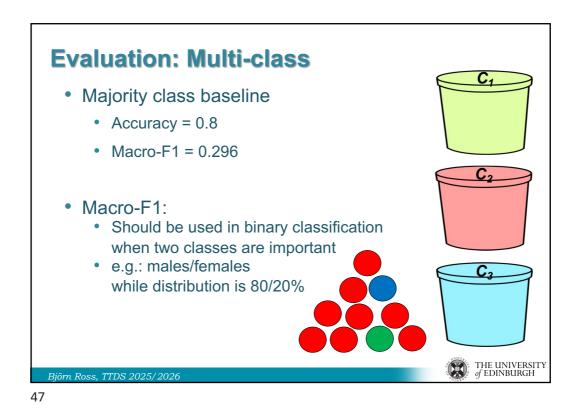


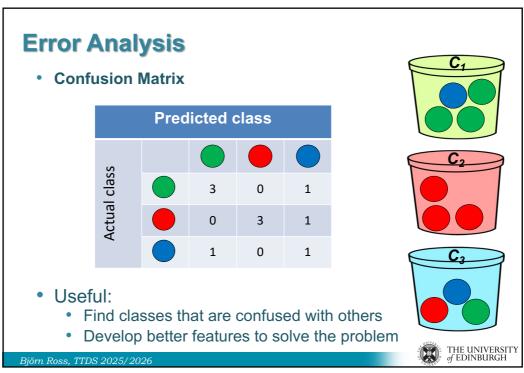

Björn Ross, TTDS 2025/2026

43


Evaluation: Binary Classification


- A = (1+6)/10 = 0.7 System 1
- A = (0+7)/10 = 0.7 System 2
- When classes are highly unbalanced
 - Precision/recall/F1 for the rare class
 - e.g. Spam classification (detection)





Björn Ross, TTDS 2025/2026

Data splitting

- It's important to avoid overfitting
- Labelled data could be split into two parts
 - Training: used to train the classifier (e.g. 80% of the data)
 - Test: used to test the performance of the trained classifier on unseen data (e.g. 20% of the data)

Björn Ross, TTDS 2025/2026

49

Hyperparameter optimisation

- Most classifiers have some hyperparameters to be optimized
 - The C parameter in soft-margin SVMs
 - The *r*, *d* parameters of non-linear kernels
 - · Decision threshold for binary SVM
- We may also try different models (SVM, Fine-tuned RoBERTa, GPT-4o zero-shot..) so we could overfit to this choice
- Usually labelled data is split into three parts
 - Training: used for training / fine-tuning (typically **80%** of the data)
 - Development: used to optimise hyperparameters. Apply the classifier
 on this data with different values of the hyperparameters and report
 the one that achieves the highest results (usually 10% of the data)
 - Test: used to test the performance of the trained classifier with the optimal hyperparameters on these unseen data (usually 10% of the data)
- Optimising the hyperparameters on test data is cheating!

Björn Ross, TTDS 2025/2026

Summary

- Text Classification tasks
- Types of text classification
- Models and methods for text classification
 - Rule-based
 - · Supervised learning-based
 - Pre-trained language models
- Baselines and evaluation

Björn Ross, TTDS 2025/2026

52

Resources

- Fabrizio Sebastiani
 Machine Learning in Automated Text Categorization
 ACM Computing Surveys, 2002
 Link: https://arxiv.org/pdf/cs/0110053
- Yoav Goldberg

A Primer on Neural Network Models for Natural Language Processing

Link: https://arxiv.org/abs/1510.00726

 Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.

