(1)

Introduction to Theoretical Computer Science

Exercise Sheet: Week 9

One way to code up list structures in A-calculus is this. The list (x,y, 2)
is represented as a function that takes two arguments ¢ and n, and gives
back cx(cy(czn)); in other words, (z,vy, 2) def Ac.an.cx(cy(czn)). Similarly
for lists of other lengths.

Explain this construction. (Hint: the choice of ‘¢’ and ‘n’ as letters is
not random.)

Give definitions in this encoding of A-terms representing the nail list,
the cons function, and the head function for lists.

What happens if you call your head function on the nil list?
The recursion combinator we used was

Y L AFOX.F(XX))(AX.F(XX))

What happens if you try to use Y in a call-by-value evaluation strategy?
Here is a different version of Y that works for call-by-value:

Y EAFNX.FOA\ZXXZ)AX.FI\NZ.XXZ))

This is very similar — study it, and describe what technique, mentioned
in the slides, is being used to make Y’ from Y. (Hint: a Greek letter is
involved.)

If t is a well-typed A-term ¢ : 7, then it evaluates into a well-typed term

t' . 7. Is it true that for general terms s and ¢, if s’ : 7 and s LA s’, then

s:T?



